These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 33747683)
1. Explainability Metrics of Deep Convolutional Networks for Photoplethysmography Quality Assessment. Zhang O; Ding C; Pereira T; Xiao R; Gadhoumi K; Meisel K; Lee RJ; Chen Y; Hu X IEEE Access; 2021; 9():29736-29745. PubMed ID: 33747683 [TBL] [Abstract][Full Text] [Related]
2. InsightSleepNet: the interpretable and uncertainty-aware deep learning network for sleep staging using continuous Photoplethysmography. Nam B; Bark B; Lee J; Kim IY BMC Med Inform Decis Mak; 2024 Feb; 24(1):50. PubMed ID: 38355559 [TBL] [Abstract][Full Text] [Related]
3. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Reiss A; Indlekofer I; Schmidt P; Van Laerhoven K Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336894 [TBL] [Abstract][Full Text] [Related]
4. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks. Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543 [TBL] [Abstract][Full Text] [Related]
5. Robust PPG motion artifact detection using a 1-D convolution neural network. Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054 [TBL] [Abstract][Full Text] [Related]
6. KID-PPG: Knowledge Informed Deep Learning for Extracting Heart Rate from a Smartwatch. Kechris C; Dan J; Miranda J; Atienza D IEEE Trans Biomed Eng; 2024 Oct; PP():. PubMed ID: 39383068 [TBL] [Abstract][Full Text] [Related]
7. A Novel PPG-Based Biometric Authentication System Using a Hybrid CVT-ConvMixer Architecture with Dense and Self-Attention Layers. Ibrahim MEA; Abbas Q; Daadaa Y; Ahmed AES Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202878 [TBL] [Abstract][Full Text] [Related]
8. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches. Chen J; Sun K; Sun Y; Li X Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1153-1156. PubMed ID: 34891492 [TBL] [Abstract][Full Text] [Related]
9. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R Elife; 2020 Oct; 9():. PubMed ID: 33074102 [TBL] [Abstract][Full Text] [Related]
10. CEFEs: A CNN Explainable Framework for ECG Signals. Maweu BM; Dakshit S; Shamsuddin R; Prabhakaran B Artif Intell Med; 2021 May; 115():102059. PubMed ID: 34001319 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study. Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302 [TBL] [Abstract][Full Text] [Related]
12. A Sliding Scale Signal Quality Metric of Photoplethysmography Applicable to Measuring Heart Rate across Clinical Contexts with Chest Mounting as a Case Study. McLean MK; Weaver RG; Lane A; Smith MT; Parker H; Stone B; McAninch J; Matolak DW; Burkart S; Chandrashekhar MVS; Armstrong B Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050488 [TBL] [Abstract][Full Text] [Related]
13. Saliency-driven explainable deep learning in medical imaging: bridging visual explainability and statistical quantitative analysis. Brima Y; Atemkeng M BioData Min; 2024 Jun; 17(1):18. PubMed ID: 38909228 [TBL] [Abstract][Full Text] [Related]
14. Deep convolutional neural network-based signal quality assessment for photoplethysmogram. Shin H Comput Biol Med; 2022 Jun; 145():105430. PubMed ID: 35339844 [TBL] [Abstract][Full Text] [Related]
15. PPG Signal Reconstruction Using Deep Convolutional Generative Adversarial Network. Wang Y; Azimi I; Kazemi K; Rahmani AM; Liljeberg P Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3387-3391. PubMed ID: 36086184 [TBL] [Abstract][Full Text] [Related]
16. Photoplethysmogram based vascular aging assessment using the deep convolutional neural network. Shin H; Noh G; Choi BM Sci Rep; 2022 Jul; 12(1):11377. PubMed ID: 35790836 [TBL] [Abstract][Full Text] [Related]
17. Application of Imaging Examination Based on Deep Learning in the Diagnosis of Viral Senile Pneumonia. Deng X; Ge X; Xue Q; Liu H Contrast Media Mol Imaging; 2022; 2022():6964283. PubMed ID: 35694707 [TBL] [Abstract][Full Text] [Related]
19. CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment. Biswas D; Everson L; Liu M; Panwar M; Verhoef BE; Patki S; Kim CH; Acharyya A; Van Hoof C; Konijnenburg M; Van Helleputte N IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):282-291. PubMed ID: 30629514 [TBL] [Abstract][Full Text] [Related]
20. PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram. Shyam A; Ravichandran V; Preejith SP; Joseph J; Sivaprakasam M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1899-1902. PubMed ID: 31946269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]