These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33747740)

  • 1. Doped Highly Crystalline Organic Films: Toward High-Performance Organic Electronics.
    Sawatzki MF; Kleemann H; Boroujeni BK; Wang SJ; Vahland J; Ellinger F; Leo K
    Adv Sci (Weinh); 2021 Mar; 8(6):2003519. PubMed ID: 33747740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices.
    Sawatzki-Park M; Wang SJ; Kleemann H; Leo K
    Chem Rev; 2023 Jul; 123(13):8232-8250. PubMed ID: 37315945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics.
    Stingelin-Stutzmann N; Smits E; Wondergem H; Tanase C; Blom P; Smith P; de Leeuw D
    Nat Mater; 2005 Aug; 4(8):601-6. PubMed ID: 16025124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors.
    Lee HM; Kim JJ; Choi JH; Cho SO
    ACS Nano; 2011 Oct; 5(10):8352-6. PubMed ID: 21923165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 V(-1) s(-1).
    Son J; Moetakef P; Jalan B; Bierwagen O; Wright NJ; Engel-Herbert R; Stemmer S
    Nat Mater; 2010 Jun; 9(6):482-4. PubMed ID: 20364139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic bipolar transistors.
    Wang SJ; Sawatzki M; Darbandy G; Talnack F; Vahland J; Malfois M; Kloes A; Mannsfeld S; Kleemann H; Leo K
    Nature; 2022 Jun; 606(7915):700-705. PubMed ID: 35732763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
    Tang CG; Ang MC; Choo KK; Keerthi V; Tan JK; Syafiqah MN; Kugler T; Burroughes JH; Png RQ; Chua LL; Ho PK
    Nature; 2016 Nov; 539(7630):536-540. PubMed ID: 27882976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet printing of single-crystal films.
    Minemawari H; Yamada T; Matsui H; Tsutsumi J; Haas S; Chiba R; Kumai R; Hasegawa T
    Nature; 2011 Jul; 475(7356):364-7. PubMed ID: 21753752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epitaxial growth of molecular crystals on van der waals substrates for high-performance organic electronics.
    Lee CH; Schiros T; Santos EJ; Kim B; Yager KG; Kang SJ; Lee S; Yu J; Watanabe K; Taniguchi T; Hone J; Kaxiras E; Nuckolls C; Kim P
    Adv Mater; 2014 May; 26(18):2812-7. PubMed ID: 24458727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoS
    He X; Chow W; Liu F; Tay B; Liu Z
    Small; 2017 Jan; 13(2):. PubMed ID: 27762499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Ultrahigh-Speed Fabrication of Uniform Polycrystalline Thin Films for Organic Transistors.
    Wu H; Iino H; Hanna JI
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29497-29504. PubMed ID: 32436375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugated foldamers with unusually high space-charge-limited current hole mobilities.
    Li Y; Dutta T; Gerasimchuk N; Wu S; Shetye K; Jin L; Wang R; Zhu DM; Peng Z
    ACS Appl Mater Interfaces; 2015 May; 7(18):9372-84. PubMed ID: 25915005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.
    Janneck R; Pilet N; Bommanaboyena SP; Watts B; Heremans P; Genoe J; Rolin C
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29024126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics.
    Giannini S; Blumberger J
    Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-crystalline semiconducting polymers with high charge-carrier mobility.
    McCulloch I; Heeney M; Bailey C; Genevicius K; Macdonald I; Shkunov M; Sparrowe D; Tierney S; Wagner R; Zhang W; Chabinyc ML; Kline RJ; McGehee MD; Toney MF
    Nat Mater; 2006 Apr; 5(4):328-33. PubMed ID: 16547518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.