These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33748326)

  • 1. Complex Spectral Mapping for Single- and Multi-Channel Speech Enhancement and Robust ASR.
    Wang ZQ; Wang P; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():1778-1787. PubMed ID: 33748326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Based Target Cancellation for Speech Dereverberation.
    Wang ZQ; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():941-950. PubMed ID: 33748324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-microphone Complex Spectral Mapping for Utterance-wise and Continuous Speech Separation.
    Wang ZQ; Wang P; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2021; 29():2001-2014. PubMed ID: 34212067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-stage hybrid neural beamformer for multi-channel speech enhancement.
    Kuang K; Yang F; Li J; Yang J
    J Acoust Soc Am; 2023 Jun; 153(6):3378. PubMed ID: 37342887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Optimization of Deep Neural Network-Based Dereverberation and Beamforming for Sound Event Detection in Multi-Channel Environments.
    Noh K; Chang JH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Robustness of Deep Neural Network Acoustic Models via Speech Separation and Joint Adaptive Training.
    Narayanan A; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2015 Jan; 23(1):92-101. PubMed ID: 26973851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Based Real-time Speech Enhancement for Dual-microphone Mobile Phones.
    Tan K; Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2021; 29():1853-1863. PubMed ID: 34179221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Complex Spectral Mapping with Gated Convolutional Recurrent Networks for Monaural Speech Enhancement.
    Tan K; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():380-390. PubMed ID: 33748323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech recognition with a hearing-aid processing scheme combining beamforming with mask-informed speech enhancement.
    Green T; Hilkhuysen G; Huckvale M; Rosen S; Brookes M; Moore A; Naylor P; Lightburn L; Xue W
    Trends Hear; 2022; 26():23312165211068629. PubMed ID: 34985356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep neural network-based generalized sidelobe canceller for dual-channel far-field speech recognition.
    Li G; Liang S; Nie S; Liu W; Yang Z
    Neural Netw; 2021 Sep; 141():225-237. PubMed ID: 33930564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep causal speech enhancement and recognition using efficient long-short term memory Recurrent Neural Network.
    Li Z; Basit A; Daraz A; Jan A
    PLoS One; 2024; 19(1):e0291240. PubMed ID: 38170703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Speech Spatial Covariance Matrix Estimation for Online Multi-Microphone Speech Enhancement.
    Kim M; Cheong S; Song H; Shin JW
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time spectrum estimation-based dual-channel speech-enhancement algorithm for cochlear implant.
    Chen Y; Gong Q
    Biomed Eng Online; 2012 Sep; 11():74. PubMed ID: 23006896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of the Digital QS-SVM-Based Beamformer on an FPGA Platform.
    Komeylian S; Paolini C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research of front-end speech enhancement and beamforming algorithm based on dual microphoneforcochlear implant].
    Chen Y; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):468-477. PubMed ID: 31232551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Based Binaural Speech Separation in Reverberant Environments.
    Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2017 May; 25(5):1075-1084. PubMed ID: 29057291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech signal enhancement in cocktail party scenarios by deep learning based virtual sensing of head-mounted microphones.
    Fischer T; Caversaccio M; Wimmer W
    Hear Res; 2021 Sep; 408():108294. PubMed ID: 34182232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.