These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33748413)

  • 21. A soft exosuit for hip extension assistance of the elderly.
    Fang T; Cao W; Chen C; Zhang Y; Wang Z; Wu X
    Technol Health Care; 2021; 29(4):837-841. PubMed ID: 33427699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biologically-inspired soft exosuit.
    Asbeck AT; Dyer RJ; Larusson AF; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650455. PubMed ID: 24187272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bilateral vs. Paretic-Limb-Only Ankle Exoskeleton Assistance for Improving Hemiparetic Gait: A Case Series.
    Fang Y; Lerner ZF
    IEEE Robot Autom Lett; 2022 Apr; 7(2):1246-1253. PubMed ID: 35873136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation.
    Awad LN; Kudzia P; Revi DA; Ellis TD; Walsh CJ
    IEEE Open J Eng Med Biol; 2020; 1():108-115. PubMed ID: 33748765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Soft Exosuit for Flexible Upper-Extremity Rehabilitation.
    Lessard S; Pansodtee P; Robbins A; Trombadore JM; Kurniawan S; Teodorescu M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1604-1617. PubMed ID: 29994617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical and Physiological Evaluation of Biologically-Inspired Hip Assistance With Belt-Type Soft Exosuits.
    Chen Q; Guo S; Wang J; Wang J; Zhang D; Jin S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2802-2814. PubMed ID: 36155479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Lightweight Wearable Soft Exosuit for Reducing the Metabolic Rate and Muscle Fatigue.
    Chen L; Chen C; Wang Z; Ye X; Liu Y; Wu X
    Biosensors (Basel); 2021 Jun; 11(7):. PubMed ID: 34208947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving Walking Economy With an Ankle Exoskeleton Prior to Human-in-the-Loop Optimization.
    Wang W; Chen J; Ding J; Zhang J; Liu J
    Front Neurorobot; 2021; 15():797147. PubMed ID: 35082609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke.
    Arens P; Siviy C; Bae J; Choe DK; Karavas N; Baker T; Ellis TD; Awad LN; Walsh CJ
    Wearable Technol; 2021; 2():. PubMed ID: 34396094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance.
    Fang S; Kinney AL; Reissman ME; Reissman T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit.
    Missiroli F; Lotti N; Xiloyannis M; Sloot LH; Riener R; Masia L
    Front Robot AI; 2020; 7():595844. PubMed ID: 33501357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Soft-Inflatable Exosuit for Knee Rehabilitation: Assisting Swing Phase During Walking.
    Sridar S; Qiao Z; Muthukrishnan N; Zhang W; Polygerinos P
    Front Robot AI; 2018; 5():44. PubMed ID: 33500930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Assistive Soft Wrist Exosuit for Flexion Movements With an Ergonomic Reinforced Glove.
    Chiaradia D; Tiseni L; Xiloyannis M; Solazzi M; Masia L; Frisoli A
    Front Robot AI; 2020; 7():595862. PubMed ID: 33537345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.