BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33748566)

  • 1. Progress in Tuning Emission of the Excited-State Intramolecular Proton Transfer (ESIPT)-Based Fluorescent Probes.
    Li Y; Dahal D; Abeywickrama CS; Pang Y
    ACS Omega; 2021 Mar; 6(10):6547-6553. PubMed ID: 33748566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents.
    Sedgwick AC; Wu L; Han HH; Bull SD; He XP; James TD; Sessler JL; Tang BZ; Tian H; Yoon J
    Chem Soc Rev; 2018 Nov; 47(23):8842-8880. PubMed ID: 30361725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment.
    Pivovarenko VG; Klymchenko AS
    Chem Rec; 2024 Feb; 24(2):e202300321. PubMed ID: 38158338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials.
    Zhao J; Ji S; Chen Y; Guo H; Yang P
    Phys Chem Chem Phys; 2012 Jul; 14(25):8803-17. PubMed ID: 22193300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: design, mechanism, and application.
    Gu H; Wang W; Wu W; Wang M; Liu Y; Jiao Y; Wang F; Wang F; Chen X
    Chem Commun (Camb); 2023 Feb; 59(15):2056-2071. PubMed ID: 36723346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications.
    Stoerkler T; Pariat T; Laurent AD; Jacquemin D; Ulrich G; Massue J
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of solvent polarity on the novel excited-state intramolecular thiol proton transfer and photophysical property compared with the oxygen proton transfer.
    Yang L; Zhang D; Wang M; Yang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122475. PubMed ID: 36780743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulating the photophysical properties of ESIPT-based fluorescent probes by functional group substitution: a DFT/TDDFT study.
    Cai H; Lu H; Liu B; Sun C; Zhao X; Zhao D
    J Mol Model; 2023 Apr; 29(5):126. PubMed ID: 37016199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zn(2+) binding-enabled excited state intramolecular proton transfer: a step toward new near-infrared fluorescent probes for imaging applications.
    Xu Y; Liu Q; Dou B; Wright B; Wang J; Pang Y
    Adv Healthc Mater; 2012 Jul; 1(4):485-92. PubMed ID: 23184782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphilic Molecules Exhibiting Zwitterionic Excited-State Intramolecular Proton Transfer and Near-Infrared Emission for the Detection of Amyloid β Aggregates in Alzheimer's Disease.
    Yu Z; Moshood Y; Wozniak MK; Patel S; Terpstra K; Llano DA; Dobrucki LW; Mirica LM
    Chemistry; 2023 Nov; 29(64):e202302408. PubMed ID: 37616059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Selective and Sensitive Turn-Off-On Fluorescent Probes for Sensing Al
    Li YP; Zhu XH; Li SN; Jiang YC; Hu MC; Zhai QG
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11338-11348. PubMed ID: 30834744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria.
    Du Y; Wang H; Zhang T; Wen W; Li Z; Bi M; Liu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120390. PubMed ID: 34536889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging.
    Xu D; Liu M; Zou H; Tian J; Huang H; Wan Q; Dai Y; Wen Y; Zhang X; Wei Y
    Talanta; 2017 Nov; 174():803-808. PubMed ID: 28738657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron Oxide Nanoparticles Labeled with an Excited-State Intramolecular Proton Transfer Dye.
    de Oliveira EM; Coelho FL; Zanini ML; Papaléo RM; Campo LF
    Chemphyschem; 2016 Oct; 17(20):3176-3180. PubMed ID: 27324315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESIPT-based probes for cations, anions and neutral species: recent progress, multidisciplinary applications and future perspectives.
    Nehra N; Kaushik R
    Anal Methods; 2023 Oct; 15(40):5268-5285. PubMed ID: 37800698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NIR-emitting styryl dyes with large Stokes' shifts for imaging application: From cellular plasma membrane, mitochondria to Zebrafish neuromast.
    Dahal D; Ojha KR; Pokhrel S; Paruchuri S; Konopka M; Liu Q; Pang Y
    Dyes Pigm; 2021 Oct; 194():. PubMed ID: 34366501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process.
    Kwon JE; Park SY
    Adv Mater; 2011 Aug; 23(32):3615-42. PubMed ID: 21780312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer (ESIPT) Emitters with Sulfobetaine Fragments.
    Munch M; Ulrich G; Massue J
    Org Biomol Chem; 2022 Jun; 20(22):4640-4649. PubMed ID: 35612088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence Lifetimes of NIR-Emitting Molecules with Excited-State Intramolecular Proton Transfer.
    Li Y; Dahal D; Pang Y
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red-Shift (2-Hydroxyphenyl)-Benzothiazole Emission by Mimicking the Excited-State Intramolecular Proton Transfer Effect.
    Ren Y; Zhou L; Li X
    Front Chem; 2021; 9():807433. PubMed ID: 35004624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.