These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33748601)

  • 1. Tuning the Surface Plasmon Resonance of Gold Dumbbell Nanorods.
    Chapagain P; Guisbiers G; Kusper M; Geoffrion LD; Benamara M; Golden A; Bachri A; Hewavitharana L
    ACS Omega; 2021 Mar; 6(10):6871-6880. PubMed ID: 33748601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm.
    Chang HH; Murphy CJ
    Chem Mater; 2018 Feb; 30(4):1427-1435. PubMed ID: 31404258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thorough tuning of the aspect ratio of gold nanorods using response surface methodology.
    Hormozi-Nezhad MR; Robatjazi H; Jalali-Heravi M
    Anal Chim Acta; 2013 May; 779():14-21. PubMed ID: 23663667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A plasmonic biosensor array exploiting plasmon coupling between gold nanorods and spheres for domoic acid detection via two methods.
    Nelis JLD; Salvador JP; Marco MP; Elliott CT; Campbell K
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119473. PubMed ID: 33524817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short gold nanorod growth revisited: the critical role of the bromide counterion.
    Si S; Leduc C; Delville MH; Lounis B
    Chemphyschem; 2012 Jan; 13(1):193-202. PubMed ID: 22162413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-Confined Seeded Growth of Cu Nanorods with Strong Surface Plasmon Resonance for Photothermal Actuation.
    Chen J; Feng J; Yang F; Aleisa R; Zhang Q; Yin Y
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9275-9281. PubMed ID: 31062923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods.
    Tsutsui Y; Hayakawa T; Kawamura G; Nogami M
    Nanotechnology; 2011 Jul; 22(27):275203. PubMed ID: 21597141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of gold nanorods and bipyramids using CTEAB surfactant.
    Kou X; Zhang S; Tsung CK; Yeung MH; Shi Q; Stucky GD; Sun L; Wang J; Yan C
    J Phys Chem B; 2006 Aug; 110(33):16377-83. PubMed ID: 16913766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.
    Huang X; El-Sayed IH; Qian W; El-Sayed MA
    J Am Chem Soc; 2006 Feb; 128(6):2115-20. PubMed ID: 16464114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.
    Liu M; Guyot-Sionnest P
    J Phys Chem B; 2005 Dec; 109(47):22192-200. PubMed ID: 16853888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Synthesis of Ag Nanorods with No Plasmon Resonance Peak in the Visible Region by Using Pd Decahedra of 16 nm in Size as Seeds.
    Luo M; Huang H; Choi SI; Zhang C; da Silva RR; Peng HC; Li ZY; Liu J; He Z; Xia Y
    ACS Nano; 2015 Oct; 9(10):10523-32. PubMed ID: 26372854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Small Gold Nanorods and Their Subsequent Functionalization with Hairpin Single Stranded DNA.
    Mbalaha ZS; Edwards PR; Birch DJS; Chen Y
    ACS Omega; 2019 Aug; 4(9):13740-13746. PubMed ID: 31497691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-Mediated Synthesis of Tunable-Aspect-Ratio Gold Nanorods for Near-Infrared Photoacoustic Imaging.
    Li P; Wu Y; Li D; Su X; Luo C; Wang Y; Hu J; Li G; Jiang H; Zhang W
    Nanoscale Res Lett; 2018 Oct; 13(1):313. PubMed ID: 30288620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterometallic Seed-Mediated Growth of Monodisperse Colloidal Copper Nanorods with Widely Tunable Plasmonic Resonances.
    Jeong S; Liu Y; Zhong Y; Zhan X; Li Y; Wang Y; Cha PM; Chen J; Ye X
    Nano Lett; 2020 Oct; 20(10):7263-7271. PubMed ID: 32866022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfide-Arrested Growth of Gold Nanorods.
    Zweifel DA; Wei A
    Chem Mater; 2005 Aug; 17(16):4256-4261. PubMed ID: 17415410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Gold Hollow Nanorods with Controllable Aspect Ratio for Multimodal Imaging and Combined Chemo-Photothermal Therapy in the Second Near-Infrared Window.
    Cai K; Zhang W; Zhang J; Li H; Han H; Zhai T
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36703-36710. PubMed ID: 30284807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.