These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33748621)
1. Copper Nanoparticle Loading and F Doping of Graphene Aerogel Enhance Its Adsorption of Aqueous Perfluorooctanoic Acid. Liu L; Che N; Wang S; Liu Y; Li C ACS Omega; 2021 Mar; 6(10):7073-7085. PubMed ID: 33748621 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical adsorption of perfluorooctanoic acid on a novel reduced graphene oxide aerogel loaded with Cu nanoparticles and fluorine. Liu L; Liu Y; Che N; Gao B; Li C J Hazard Mater; 2021 Aug; 416():125866. PubMed ID: 33894436 [TBL] [Abstract][Full Text] [Related]
3. Removal of perfluorooctanoic acid (PFOA) from aqueous solution by amino-functionalized graphene oxide (AGO) aerogels: Influencing factors, kinetics, isotherms, and thermodynamic studies. Tian D; Geng D; Tyler Mehler W; Goss G; Wang T; Yang S; Niu Y; Zheng Y; Zhang Y Sci Total Environ; 2021 Aug; 783():147041. PubMed ID: 34088148 [TBL] [Abstract][Full Text] [Related]
4. TiO Zhu C; Xu J; Song S; Wang J; Li Y; Liu R; Shen Y Sci Total Environ; 2020 Jan; 698():134275. PubMed ID: 31505352 [TBL] [Abstract][Full Text] [Related]
5. Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid. Liu L; Li D; Li C; Ji R; Tian X J Hazard Mater; 2018 Jun; 351():206-214. PubMed ID: 29550554 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670 [TBL] [Abstract][Full Text] [Related]
7. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Li X; Chen S; Quan X; Zhang Y Environ Sci Technol; 2011 Oct; 45(19):8498-505. PubMed ID: 21861476 [TBL] [Abstract][Full Text] [Related]
8. Improved sorption of perfluorooctanoic acid on carbon nanotubes hybridized by metal oxide nanoparticles. Liu L; Liu Y; Li C; Ji R; Tian X Environ Sci Pollut Res Int; 2018 Jun; 25(16):15507-15517. PubMed ID: 29569201 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and evaluation of molecularly imprinted polymers with binary functional monomers for the selective removal of perfluorooctanesulfonic acid and perfluorooctanoic acid. Cao F; Wang L; Tian Y; Wu F; Deng C; Guo Q; Sun H; Lu S J Chromatogr A; 2017 Sep; 1516():42-53. PubMed ID: 28823786 [TBL] [Abstract][Full Text] [Related]
10. Graphene oxide biopolymer aerogels for the removal of lead from drinking water using a novel nano-enhanced ion exchange cascade. Bloor JM; Handy RD; Awan SA; Jenkins DFL Ecotoxicol Environ Saf; 2021 Jan; 208():111422. PubMed ID: 33091776 [TBL] [Abstract][Full Text] [Related]
11. Enhanced adsorption of perfluorooctanoic acid (PFOA) from water by granular activated carbon supported magnetite nanoparticles. Xu J; Liu Z; Zhao D; Gao N; Fu X Sci Total Environ; 2020 Jun; 723():137757. PubMed ID: 32213398 [TBL] [Abstract][Full Text] [Related]
12. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Gong Y; Wang L; Liu J; Tang J; Zhao D Sci Total Environ; 2016 Aug; 562():191-200. PubMed ID: 27100000 [TBL] [Abstract][Full Text] [Related]
13. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. Chen MJ; Lo SL; Lee YC; Huang CC J Hazard Mater; 2015 May; 288():168-75. PubMed ID: 25704293 [TBL] [Abstract][Full Text] [Related]
14. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. Li F; Wei Z; He K; Blaney L; Cheng X; Xu T; Liu W; Zhao D Water Res; 2020 Oct; 185():116219. PubMed ID: 32731078 [TBL] [Abstract][Full Text] [Related]
16. Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Liu Y; Hu XM; Zhao Y; Wang J; Lu MX; Peng FH; Bao J Chemosphere; 2018 Jun; 201():303-309. PubMed ID: 29525658 [TBL] [Abstract][Full Text] [Related]
17. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode. Yang B; Jiang C; Yu G; Zhuo Q; Deng S; Wu J; Zhang H J Hazard Mater; 2015 Dec; 299():417-24. PubMed ID: 26183235 [TBL] [Abstract][Full Text] [Related]
18. Graphene Oxide and Its Derivatives as Adsorbents for PFOA Molecules. Wang X; Zhang H; Ham S; Qiao R J Phys Chem B; 2023 Nov; 127(44):9620-9629. PubMed ID: 37883484 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu Han Q; Chen L; Li W; Zhou Z; Fang Z; Xu Z; Qian X Environ Sci Pollut Res Int; 2018 Dec; 25(34):34438-34447. PubMed ID: 30306446 [TBL] [Abstract][Full Text] [Related]
20. Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid. Chen YC; Lo SL; Kuo J Water Res; 2011 Aug; 45(14):4131-40. PubMed ID: 21703658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]