BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33748670)

  • 1. Comparison of central corneal thickness measurements with three different optical devices.
    Üçer MB; Bozkurt E
    Ther Adv Ophthalmol; 2021; 13():2515841421995633. PubMed ID: 33748670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of central corneal thickness measurements with three new optical devices and a standard ultrasonic pachymeter.
    Bayhan HA; Aslan Bayhan S; Can I
    Int J Ophthalmol; 2014; 7(2):302-8. PubMed ID: 24790874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeatability and agreement of central corneal thickness measurement with non-contact methods: a comparative study.
    Mansoori T; Balakrishna N
    Int Ophthalmol; 2018 Jun; 38(3):959-966. PubMed ID: 28434071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Central Corneal Thickness Measurements Obtained by RTVue OCT, Lenstar, Sirius Topography, and Ultrasound Pachymetry in Healthy Subjects.
    Şimşek A; Bilak Ş; Güler M; Çapkin M; Bilgin B; Reyhan AH
    Semin Ophthalmol; 2016; 31(5):467-72. PubMed ID: 25412328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central and midperipheral corneal thickness measured with Scheimpflug imaging and optical coherence tomography.
    Huang J; Ding X; Savini G; Jiang Z; Pan C; Hua Y; Wu F; Feng Y; Yu Y; Wang Q
    PLoS One; 2014; 9(5):e98316. PubMed ID: 24854348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of central corneal thickness measurements with standard ultrasonic pachymetry and optical devices.
    Doğan M; Ertan E
    Clin Exp Optom; 2019 Mar; 102(2):126-130. PubMed ID: 30557910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of central corneal thickness measurements with different non-contact devices in healthy children.
    Yalcın SO; Kaplan AT
    Photodiagnosis Photodyn Ther; 2022 Dec; 40():103045. PubMed ID: 35908681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of central corneal thickness measurements using three different imaging devices.
    Kan E; Duran M; Yakar K
    J Fr Ophtalmol; 2023 Jun; 46(6):589-595. PubMed ID: 37076388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agreement and repeatability of central corneal thickness measurements by four different optical devices and an ultrasound pachymeter.
    Gokcinar NB; Yumusak E; Ornek N; Yorubulut S; Onaran Z
    Int Ophthalmol; 2019 Jul; 39(7):1589-1598. PubMed ID: 29984376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of anterior segment parameter values obtained with Scheimpflug-Placido topographer, optical low coherence reflectometry and noncontact specular microscopy in morbid obesity.
    Dogan B; Dogan U; Erol MK; Habibi M; Oruc MT
    Eur Rev Med Pharmacol Sci; 2017 Feb; 21(3):438-445. PubMed ID: 28239829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of central corneal thickness measured by ultrasound pachymetry, corneal topography, spectral domain- optical coherence tomography, and non-contact specular microscopy.
    Ulutas HG; Ozkaya G; Amuk Hamidi N
    Photodiagnosis Photodyn Ther; 2023 Jun; 42():103527. PubMed ID: 36966866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Central Corneal Thickness Measured by Standard Ultrasound Pachymetry, Corneal Topography, Tono-Pachymetry and Anterior Segment Optical Coherence Tomography.
    González-Pérez J; Queiruga Piñeiro J; Sánchez García Á; González Méijome JM
    Curr Eye Res; 2018 Jul; 43(7):866-872. PubMed ID: 29634372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central corneal thickness and anterior chamber depth measurement by Sirius(®) Scheimpflug tomography and ultrasound.
    Jorge J; Rosado J; Díaz-Rey J; González-Méijome J
    Clin Ophthalmol; 2013; 7():417-22. PubMed ID: 23467857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of central corneal thickness with four noncontact devices: An agreement analysis of swept-source technology.
    Ozyol E; Özyol P
    Indian J Ophthalmol; 2017 Jun; 65(6):461-465. PubMed ID: 28643709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of central corneal thickness measurement with RTVue spectral domain optical coherence tomography in normal subjects.
    Rao HL; Kumar AU; Kumar A; Chary S; Senthil S; Vaddavalli PK; Garudadri CS
    Cornea; 2011 Feb; 30(2):121-6. PubMed ID: 20885314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the measurements of a novel optical biometry: Nidek AL-Scan with Sirius and a ultrasound biometry.
    Çağlar Ç; Kocamış Sİ; Demir E; Durmuş M
    Int Ophthalmol; 2017 Jun; 37(3):491-498. PubMed ID: 27392914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of anterior segment measurements using Sirius Topographer
    Duman R; Çetinkaya E; Duman R; Dogan M; Sabaner MC
    Indian J Ophthalmol; 2018 Mar; 66(3):402-406. PubMed ID: 29480251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of corneal thickness using a Scheimpflug-Placido disk corneal analyzer and comparison with ultrasound pachymetry in eyes after laser in situ keratomileusis.
    Huang J; Lu W; Savini G; Hu L; Pan C; Wang J; Tan W; Chen J; Wang Q
    J Cataract Refract Surg; 2013 Jul; 39(7):1074-80. PubMed ID: 23680632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry.
    Chen S; Huang J; Wen D; Chen W; Huang D; Wang Q
    Acta Ophthalmol; 2012 Aug; 90(5):449-55. PubMed ID: 20560892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision of a new Scheimpflug and Placido-disk analyzer in measuring corneal thickness and agreement with ultrasound pachymetry.
    Huang J; Savini G; Hu L; Hoffer KJ; Lu W; Feng Y; Yang F; Hu X; Wang Q
    J Cataract Refract Surg; 2013 Feb; 39(2):219-24. PubMed ID: 23218819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.