BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33748917)

  • 1. Streptomyces tunisiensis DSM 42037 mediated bioconversion of ferulic acid released from barley bran.
    Slama N; Mankai H; Limam F
    World J Microbiol Biotechnol; 2021 Mar; 37(4):70. PubMed ID: 33748917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decarboxylation of ferulic acid to 4-vinyl guaiacol by Streptomyces setonii.
    Max B; Carballo J; Cortés S; Domínguez JM
    Appl Biochem Biotechnol; 2012 Jan; 166(2):289-99. PubMed ID: 22081324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637.
    Ghosh S; Sachan A; Sen SK; Mitra A
    J Ind Microbiol Biotechnol; 2007 Feb; 34(2):131-8. PubMed ID: 17043806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger.
    Baqueiro-Peña I; Rodríguez-Serrano G; González-Zamora E; Augur C; Loera O; Saucedo-Castañeda G
    Bioresour Technol; 2010 Jun; 101(12):4721-4. PubMed ID: 20153180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra.
    Huang Z; Dostal L; Rosazza JP
    J Biol Chem; 1993 Nov; 268(32):23954-8. PubMed ID: 8226936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of 4-vinyl guaiacol as an intermediate in bioconversion of ferulic acid by Schizophyllum commune.
    Tsujiyama S; Ueno M
    Biosci Biotechnol Biochem; 2008 Jan; 72(1):212-5. PubMed ID: 18175910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of corn bran derived ferulic acid to vanillic acid using engineered
    Upadhyay P; Singh NK; Tupe R; Odenath A; Lali A
    Prep Biochem Biotechnol; 2020; 50(4):341-348. PubMed ID: 31809239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of ferulic acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes.
    Hunter WJ; Manter DK; van der Lelie D
    Curr Microbiol; 2012 Dec; 65(6):752-7. PubMed ID: 22986816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii.
    Sutherland JB; Crawford DL; Pometto AL
    Can J Microbiol; 1983 Oct; 29(10):1253-7. PubMed ID: 6661696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of 4-vinylguaiacol from crude ferulic acid by Bacillus licheniformis DLF-17056.
    Sun LH; Lv SW; Yu F; Li SN; He LY
    J Biotechnol; 2018 Sep; 281():144-149. PubMed ID: 30016740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprocess design for the microbial production of natural phenolic compounds by Debaryomyces hansenii.
    Max B; Tugores F; Cortés-Diéguez S; Domínguez JM
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2268-84. PubMed ID: 23076573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of trans-ferulic and p-coumaric acid by Acinetobacter calcoaceticus DSM 586.
    Delneri D; Degrassi G; Rizzo R; Bruschi CV
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):363-7. PubMed ID: 7599157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of rice bran to ferulic acid by pediococcal isolates.
    Kaur B; Chakraborty D; Kaur G; Kaur G
    Appl Biochem Biotechnol; 2013 Jun; 170(4):854-67. PubMed ID: 23615732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol.
    Pometto AL; Sutherland JB; Crawford DL
    Can J Microbiol; 1981 Jun; 27(6):636-8. PubMed ID: 7260738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116.
    Pérez-Rodríguez N; Pinheiro de Souza Oliveira R; Torrado Agrasar AM; Domínguez JM
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1677-1689. PubMed ID: 26476645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains.
    Sharma UK; Sharma N; Salwan R; Kumar R; Kasana RC; Sinha AK
    J Sci Food Agric; 2012 Feb; 92(3):610-7. PubMed ID: 21919002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced vanillin production from ferulic acid using adsorbent resin.
    Hua D; Ma C; Song L; Lin S; Zhang Z; Deng Z; Xu P
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):783-90. PubMed ID: 17124580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial catabolism of vanillate: decarboxylation to guaiacol.
    Crawford RL; Olson PP
    Appl Environ Microbiol; 1978 Oct; 36(4):539-43. PubMed ID: 101140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus.
    Lesage-Meessen L; Delattre M; Haon M; Thibault JF; Ceccaldi BC; Brunerie P; Asther M
    J Biotechnol; 1996 Oct; 50(2-3):107-13. PubMed ID: 8987621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley.
    Hernanz D; Nuñez V; Sancho AI; Faulds CB; Williamson G; Bartolomé B; Gómez-Cordovés C
    J Agric Food Chem; 2001 Oct; 49(10):4884-8. PubMed ID: 11600039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.