These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 33749083)
1. Absolute Configuration Determination from Low ee Compounds by the Crystalline Sponge Method. Unusual Conglomerate Formation in a Pre-Determined Crystalline Lattice. Dubey R; Yan K; Kikuchi T; Sairenji S; Rossen A; Goh SS; Feringa BL; Fujita M Angew Chem Int Ed Engl; 2021 May; 60(21):11809-11813. PubMed ID: 33749083 [TBL] [Abstract][Full Text] [Related]
2. The crystalline sponge method updated. Hoshino M; Khutia A; Xing H; Inokuma Y; Fujita M IUCrJ; 2016 Mar; 3(Pt 2):139-51. PubMed ID: 27006777 [TBL] [Abstract][Full Text] [Related]
3. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method. Ramadhar TR; Zheng SL; Chen YS; Clardy J Acta Crystallogr A Found Adv; 2015 Jan; 71(Pt 1):46-58. PubMed ID: 25537388 [TBL] [Abstract][Full Text] [Related]
4. An Expansion of Crystalline Sponge X-ray Analysis to Elucidate the Molecular Structure of Reactive Compounds via Ion Pair Formation. Taniguchi Y; Matsumoto R; Kadota T Chemistry; 2020 Dec; 26(68):15799-15803. PubMed ID: 32729166 [TBL] [Abstract][Full Text] [Related]
5. Combined Analysis Based on a Crystalline Sponge Method. Ohara K; Yamaguchi K Anal Sci; 2021 Jan; 37(1):167-175. PubMed ID: 33132236 [TBL] [Abstract][Full Text] [Related]
6. Where is the Oxygen? Structural Analysis of α-Humulene Oxidation Products by the Crystalline Sponge Method. Zigon N; Hoshino M; Yoshioka S; Inokuma Y; Fujita M Angew Chem Int Ed Engl; 2015 Jul; 54(31):9033-7. PubMed ID: 26072708 [TBL] [Abstract][Full Text] [Related]
7. Determination of the Absolute Configuration of the Pseudo-Symmetric Natural Product Elatenyne by the Crystalline Sponge Method. Urban S; Brkljača R; Hoshino M; Lee S; Fujita M Angew Chem Int Ed Engl; 2016 Feb; 55(8):2678-82. PubMed ID: 26880368 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of preferential enrichment, an unusual enantiomeric resolution phenomenon caused by polymorphic transition during crystallization of mixed crystals composed of two enantiomers. Tamura R; Fujimoto D; Lepp Z; Misaki K; Miura H; Takahashi H; Ushio T; Nakai T; Hirotsu K J Am Chem Soc; 2002 Nov; 124(44):13139-53. PubMed ID: 12405843 [TBL] [Abstract][Full Text] [Related]
9. Crystalline Sponge Method: X-ray Structure Analysis of Small Molecules by Post-Orientation within Porous Crystals-Principle and Proof-of-Concept Studies. Zigon N; Duplan V; Wada N; Fujita M Angew Chem Int Ed Engl; 2021 Nov; 60(48):25204-25222. PubMed ID: 34109717 [TBL] [Abstract][Full Text] [Related]
10. Determination of the absolute configuration of compounds bearing chiral quaternary carbon centers using the crystalline sponge method. Sairenji S; Kikuchi T; Abozeid MA; Takizawa S; Sasai H; Ando Y; Ohmatsu K; Ooi T; Fujita M Chem Sci; 2017 Jul; 8(7):5132-5136. PubMed ID: 28970900 [TBL] [Abstract][Full Text] [Related]
11. Chiral sensing by nonchiral tetrapyrroles. Labuta J; Hill JP; Ishihara S; Hanyková L; Ariga K Acc Chem Res; 2015 Mar; 48(3):521-9. PubMed ID: 25734700 [TBL] [Abstract][Full Text] [Related]
12. Breaking symmetry: spontaneous resolution of a polyoxometalate. Hou Y; Fang X; Hill CL Chemistry; 2007; 13(34):9442-7. PubMed ID: 17955559 [TBL] [Abstract][Full Text] [Related]
13. Crystal Engineering of a Chiral Crystalline Sponge That Enables Absolute Structure Determination and Enantiomeric Separation. Deng C; Song BQ; Lusi M; Bezrukov AA; Haskins MM; Gao MY; Peng YL; Ma JG; Cheng P; Mukherjee S; Zaworotko MJ Cryst Growth Des; 2023 Jul; 23(7):5211-5220. PubMed ID: 37426545 [TBL] [Abstract][Full Text] [Related]
14. Total spontaneous resolution of chiral covalent networks from stereochemically labile metal complexes. Johansson A; Håkansson M; Jagner S Chemistry; 2005 Sep; 11(18):5311-8. PubMed ID: 15999370 [TBL] [Abstract][Full Text] [Related]
15. Absolute configuration determination of asarinin by synchrotron radiation with crystalline sponge method. Li K; Yang DS; Gu XF; Di B Fitoterapia; 2019 Apr; 134():135-140. PubMed ID: 30771464 [TBL] [Abstract][Full Text] [Related]
16. Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. 2. Determination of enantiomeric excess of amino acids. Yao ZP; Wan TS; Kwong KP; Che CT Anal Chem; 2000 Nov; 72(21):5394-401. PubMed ID: 11080892 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous Resolution of Evans-Showell-Type Polyoxometalates in Constructing Chiral Inorganic-Organic Hybrid Architectures. An H; Wang L; Hu Y; Xu T; Hou Y Inorg Chem; 2016 Jan; 55(1):144-53. PubMed ID: 26678714 [TBL] [Abstract][Full Text] [Related]
18. Resolution of the atropochiral biminap ligand and applications in asymmetric catalysis. Abdellah I; Debono N; Canac Y; Vendier L; Chauvin R Chem Asian J; 2010 May; 5(5):1225-31. PubMed ID: 20340157 [TBL] [Abstract][Full Text] [Related]
19. HPLC-based method for determination of absolute configuration of alpha-chiral amines. Husain PA; Debnath J; May SW Anal Chem; 1993 May; 65(10):1456-61. PubMed ID: 8517551 [TBL] [Abstract][Full Text] [Related]
20. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism. Jo HH; Lin CY; Anslyn EV Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]