These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 33749128)
1. Regulating Lattice-Water-Adsorbed Ions to Optimize Intercalation Potential in 3D Prussian Blue Based Multi-Ion Microbattery. Hong X; Ma X; He L; Dai Y; Pan X; Zhu J; Luo W; Su Y; Mai L Small; 2021 May; 17(18):e2007791. PubMed ID: 33749128 [TBL] [Abstract][Full Text] [Related]
2. Alkaline Ni-Zn Microbattery Based on 3D Hierarchical Porous Ni Microcathode with High-Rate Performance. You G; Zhu Z; Duan Y; Lv L; Liao X; He X; Yang K; Song R; Yang Y; He L Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241551 [TBL] [Abstract][Full Text] [Related]
3. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte. Liu Z; Pulletikurthi G; Endres F ACS Appl Mater Interfaces; 2016 May; 8(19):12158-64. PubMed ID: 27119430 [TBL] [Abstract][Full Text] [Related]
4. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
5. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries. Li L; Hu Z; Lu Y; Wang C; Zhang Q; Zhao S; Peng J; Zhang K; Chou SL; Chen J Angew Chem Int Ed Engl; 2021 Jun; 60(23):13050-13056. PubMed ID: 33780584 [TBL] [Abstract][Full Text] [Related]
6. A Durable Ni-Zn Microbattery with Ultrahigh-Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. Zhu Z; Kan R; Wu P; Ma Y; Wang Z; Yu R; Liao X; Wu J; He L; Hu S; Mai L Small; 2021 Oct; 17(42):e2103136. PubMed ID: 34523802 [TBL] [Abstract][Full Text] [Related]
7. Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density. Chong S; Yang J; Sun L; Guo S; Liu Y; Liu HK ACS Nano; 2020 Aug; 14(8):9807-9818. PubMed ID: 32709197 [TBL] [Abstract][Full Text] [Related]
8. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. Qin M; Ren W; Jiang R; Li Q; Yao X; Wang S; You Y; Mai L ACS Appl Mater Interfaces; 2021 Jan; 13(3):3999-4007. PubMed ID: 33439613 [TBL] [Abstract][Full Text] [Related]
9. Intercalation of Al Zheng J; Yi K; Chang C Small Methods; 2024 Aug; ():e2401000. PubMed ID: 39212650 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping. Chen ZY; Fu XY; Zhang LL; Yan B; Yang XL ACS Appl Mater Interfaces; 2022 Feb; 14(4):5506-5513. PubMed ID: 35072463 [TBL] [Abstract][Full Text] [Related]
11. Low Temperature Deposition of Highly Cyclable Porous Prussian Blue Cathode for Lithium-Ion Microbattery. Patnaik SG; Pech D Small; 2021 Jun; 17(25):e2101615. PubMed ID: 34028184 [TBL] [Abstract][Full Text] [Related]
12. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries. Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes. Chen R; Huang Y; Xie M; Zhang Q; Zhang X; Li L; Wu F ACS Appl Mater Interfaces; 2016 Jun; 8(25):16078-86. PubMed ID: 27267656 [TBL] [Abstract][Full Text] [Related]
14. Percolating Network of Anionic Vacancies in Prussian Blue: Origin of Superior Ammonium-Ion Storage Performance. Xiong F; Liu X; Zuo C; Zhang X; Yang T; Zhou B; Zhang G; Tan S; An Q; Chu PK J Phys Chem Lett; 2024 Feb; 15(5):1321-1327. PubMed ID: 38285647 [TBL] [Abstract][Full Text] [Related]
15. Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System. Vafakhah S; Guo L; Sriramulu D; Huang S; Saeedikhani M; Yang HY ACS Appl Mater Interfaces; 2019 Feb; 11(6):5989-5998. PubMed ID: 30667226 [TBL] [Abstract][Full Text] [Related]
16. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries. Kim DM; Kim Y; Arumugam D; Woo SW; Jo YN; Park MS; Kim YJ; Choi NS; Lee KT ACS Appl Mater Interfaces; 2016 Apr; 8(13):8554-60. PubMed ID: 26967192 [TBL] [Abstract][Full Text] [Related]
17. Highly Crystalline Prussian Blue for Kinetics Enhanced Potassium Storage. Shu W; Huang M; Geng L; Qiao F; Wang X Small; 2023 Jul; 19(28):e2207080. PubMed ID: 37013594 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the Prussian Blue Analog Co Deng L; Yang Z; Tan L; Zeng L; Zhu Y; Guo L Adv Mater; 2018 Aug; 30(31):e1802510. PubMed ID: 29931774 [TBL] [Abstract][Full Text] [Related]
19. Birnessite Nanosheet Arrays with High K Content as a High-Capacity and Ultrastable Cathode for K-Ion Batteries. Lin B; Zhu X; Fang L; Liu X; Li S; Zhai T; Xue L; Guo Q; Xu J; Xia H Adv Mater; 2019 Jun; 31(24):e1900060. PubMed ID: 31045288 [TBL] [Abstract][Full Text] [Related]
20. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage. Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]