These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33749254)

  • 1. The Mechanism of Graphene Vapor-Solid Growth on Insulating Substrates.
    Cheng T; Liu Z; Liu Z; Ding F
    ACS Nano; 2021 Apr; 15(4):7399-7408. PubMed ID: 33749254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge structural stability and kinetics of graphene chemical vapor deposition growth.
    Shu H; Chen X; Tao X; Ding F
    ACS Nano; 2012 Apr; 6(4):3243-50. PubMed ID: 22417179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transition metal surface passivated edges of hexagonal boron nitride (h-BN) and the mechanism of h-BN's chemical vapor deposition (CVD) growth.
    Zhao R; Li F; Liu Z; Liu Z; Ding F
    Phys Chem Chem Phys; 2015 Nov; 17(43):29327-34. PubMed ID: 26469316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition.
    Ma T; Ren W; Zhang X; Liu Z; Gao Y; Yin LC; Ma XL; Ding F; Cheng HM
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20386-91. PubMed ID: 24297886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Catalyst-Free Graphene Growth on Glass Assisted by Local Fluorine Supply.
    Xie Y; Cheng T; Liu C; Chen K; Cheng Y; Chen Z; Qiu L; Cui G; Yu Y; Cui L; Zhang M; Zhang J; Ding F; Liu K; Liu Z
    ACS Nano; 2019 Sep; 13(9):10272-10278. PubMed ID: 31430126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Growth of Graphene on Insulator Using Liquid Precursor Via an Intermediate Nanostructured State Carbon Nanotube.
    Nayak PK
    Nanoscale Res Lett; 2019 Mar; 14(1):107. PubMed ID: 30903401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer-Free, Large-Scale Growth of High-Quality Graphene on Insulating Substrate by Physical Contact of Copper Foil.
    Song I; Park Y; Cho H; Choi HC
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15374-15378. PubMed ID: 30267452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed-Assisted Synthesis of Graphene Films on Insulating Substrate.
    Zhuo Q; Mao Y; Lu S; Cui B; Yu L; Tang J; Sun J; Yan C
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate.
    Li J; Chen M; Samad A; Dong H; Ray A; Zhang J; Jiang X; Schwingenschlögl U; Domke J; Chen C; Han Y; Fritz T; Ruoff RS; Tian B; Zhang X
    Nat Mater; 2022 Jul; 21(7):740-747. PubMed ID: 35058609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition.
    Su CY; Lu AY; Wu CY; Li YT; Liu KK; Zhang W; Lin SY; Juang ZY; Zhong YL; Chen FR; Li LJ
    Nano Lett; 2011 Sep; 11(9):3612-6. PubMed ID: 21834558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates.
    Lyu B; Chen J; Lou S; Li C; Qiu L; Ouyang W; Xie J; Mitchell I; Wu T; Deng A; Hu C; Zhou X; Shen P; Ma S; Wu Z; Watanabe K; Taniguchi T; Wang X; Liang Q; Jia J; Urbakh M; Hod O; Ding F; Wang S; Shi Z
    Adv Mater; 2022 Jul; 34(28):e2200956. PubMed ID: 35560711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.
    Wang L; Zhang X; Chan HL; Yan F; Ding F
    J Am Chem Soc; 2013 Mar; 135(11):4476-82. PubMed ID: 23444843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD.
    Vishwakarma R; Zhu R; Abuelwafa AA; Mabuchi Y; Adhikari S; Ichimura S; Soga T; Umeno M
    ACS Omega; 2019 Jun; 4(6):11263-11270. PubMed ID: 31460228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wafer scale BN on sapphire substrates for improved graphene transport.
    Vangala S; Siegel G; Prusnick T; Snure M
    Sci Rep; 2018 Jun; 8(1):8842. PubMed ID: 29892008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting.
    Ma L; Wang J; Yip J; Ding F
    J Phys Chem Lett; 2014 Apr; 5(7):1192-7. PubMed ID: 26274470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip Growth of Quasi-Metallic Bilayer Graphene Nanoribbons with Armchair Chirality.
    Lou S; Lyu B; Chen J; Zhou X; Jiang W; Qiu L; Shen P; Ma S; Zhang Z; Xie Y; Wu Z; Chen Y; Xu K; Liang Q; Watanabe K; Taniguchi T; Xian L; Zhang G; Ouyang W; Ding F; Shi Z
    Nano Lett; 2024 Jan; 24(1):156-164. PubMed ID: 38147652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.