BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 33749255)

  • 1. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries.
    Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Sodium Ion Storage by Multifunctional Covalent Organic Frameworks for Sustainable Sodium Batteries.
    Shehab MK; El-Kaderi HM
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14750-14758. PubMed ID: 38498858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated Synthesis of 2D Polyimide Covalent Organic Framework for Rechargeable Sodium-Ion Batteries.
    Shehab MK; Weeraratne KS; El-Kadri OM; Yadavalli VK; El-Kaderi HM
    Macromol Rapid Commun; 2023 Jun; 44(11):e2200782. PubMed ID: 36385712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries.
    Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J
    Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode.
    Haldar S; Kaleeswaran D; Rase D; Roy K; Ogale S; Vaidhyanathan R
    Nanoscale Horiz; 2020 Aug; 5(8):1264-1273. PubMed ID: 32647840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity.
    Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastable Triazine-Based Covalent Organic Framework with an Interlayer Hydrogen Bonding for Supercapacitor Applications.
    Li L; Lu F; Xue R; Ma B; Li Q; Wu N; Liu H; Yao W; Guo H; Yang W
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26355-26363. PubMed ID: 31260241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imine-Induced Metal-Organic and Covalent Organic Coexisting Framework with Superior Li-Storage Properties and Activation Mechanism.
    Zhao L; Tang X; Lv LP; Chen S; Sun W; Wang Y
    ChemSusChem; 2021 Aug; 14(16):3283-3292. PubMed ID: 34142447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent-Organic-Framework-Based Li-CO
    Li X; Wang H; Chen Z; Xu HS; Yu W; Liu C; Wang X; Zhang K; Xie K; Loh KP
    Adv Mater; 2019 Nov; 31(48):e1905879. PubMed ID: 31609043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries.
    Zhao L; Zheng L; Li X; Wang H; Lv LP; Chen S; Sun W; Wang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48913-48922. PubMed ID: 34609129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessible COF-Based Functional Materials for Potassium-Ion Batteries and Aluminum Batteries.
    Zhang Q; Wei H; Wang L; Wang J; Fan L; Ding H; Lei J; Yu X; Lu B
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44352-44359. PubMed ID: 31670939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications.
    Kumar Y; Ahmad I; Rawat A; Pandey RK; Mohanty P; Pandey R
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11605-11616. PubMed ID: 38407024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries.
    Jia C; Duan A; Liu C; Wang WZ; Gan SX; Qi QY; Li Y; Huang X; Zhao X
    Small; 2023 Jun; 19(24):e2300518. PubMed ID: 36918750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries.
    Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX
    ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodine doping induced activation of covalent organic framework cathodes for Li-ion batteries.
    Ren G; Cai F; Wang S; Luo Z; Yuan Z
    RSC Adv; 2023 Jun; 13(27):18983-18990. PubMed ID: 37362603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries.
    Xu T; Yang Y; Liu T; Jing Y
    RSC Adv; 2023 Nov; 13(49):34724-34732. PubMed ID: 38035235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithiophilic Covalent Organic Framework as Anode Coating for High-Performance Lithium Metal Batteries.
    Wu X; Zhang S; Xu X; Wen F; Wang H; Chen H; Fan X; Huang N
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202319355. PubMed ID: 38227349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Covalent Organic Framework with Extended π-Conjugated Building Units as a Highly Efficient Recipient for Lithium-Sulfur Batteries.
    Lu BY; Wang ZQ; Cui FZ; Li JY; Han XH; Qi QY; Ma DL; Jiang GF; Zeng XX; Zhao X
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34990-34998. PubMed ID: 32658445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azo-Branched Covalent Organic Framework Thin Films as Active Separators for Superior Sodium-Sulfur Batteries.
    Yin C; Li Z; Zhao D; Yang J; Zhang Y; Du Y; Wang Y
    ACS Nano; 2022 Sep; 16(9):14178-14187. PubMed ID: 35994525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.