These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33749670)

  • 1. Fluorescence In Situ Hybridization on DNA Halo Preparations to Reveal Whole Chromosomes, Telomeres and Gene Loci.
    Godwin LS; Bridger JM; Foster HA
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33749670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence in situ hybridization on DNA halo preparations and extended chromatin fibres.
    Elcock LS; Bridger JM
    Methods Mol Biol; 2010; 659():21-31. PubMed ID: 20809301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos.
    Gerdes MG; Carter KC; Moen PT; Lawrence JB
    J Cell Biol; 1994 Jul; 126(2):289-304. PubMed ID: 8034736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization.
    Clements CS; Bikkul U; Ahmed MH; Foster HA; Godwin LS; Bridger JM
    Methods Mol Biol; 2016; 1411():387-406. PubMed ID: 27147055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent in situ hybridization of the telomere repeat sequence in hamster sperm nuclear structures.
    de Lara J; Wydner KL; Hyland KM; Ward WS
    J Cell Biochem; 1993 Nov; 53(3):213-21. PubMed ID: 8263038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus.
    Meyer-Ficca M; Müller-Navia J; Scherthan H
    J Cell Sci; 1998 May; 111 ( Pt 10)():1363-70. PubMed ID: 9570754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centromere sequences localize to the nuclear halo of human spermatozoa.
    Yaron Y; Kramer JA; Gyi K; Ebrahim SA; Evans MI; Johnson MP; Krawetz SA
    Int J Androl; 1998 Feb; 21(1):13-8. PubMed ID: 9639147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological organization of the MYC/IGK locus in Burkitt's lymphoma cells assessed by nuclear halo preparations.
    Rätsch A; Joos S; Kioschis P; Lichter P
    Exp Cell Res; 2002 Feb; 273(1):12-20. PubMed ID: 11795942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
    Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X
    Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution in situ hybridization using DNA halo preparations.
    Wiegant J; Kalle W; Mullenders L; Brookes S; Hoovers JM; Dauwerse JG; van Ommen GJ; Raap AK
    Hum Mol Genet; 1992 Nov; 1(8):587-91. PubMed ID: 1301167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome organization in the nucleus: From dynamic measurements to a functional model.
    Vivante A; Brozgol E; Bronshtein I; Garini Y
    Methods; 2017 Jul; 123():128-137. PubMed ID: 28161540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher-Order Chromatin Organization Using 3D DNA Fluorescent In Situ Hybridization.
    Szabo Q; Cavalli G; Bantignies F
    Methods Mol Biol; 2021; 2157():221-237. PubMed ID: 32820407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.
    Figueroa DM; Bass HW
    Chromosome Res; 2012 May; 20(4):363-80. PubMed ID: 22588802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Xp/Yp telomere analysis by Southern-STELA.
    Ivanković M; Cukušić Kalajžić A; Skrobot Vidaček N; Franić Šimić I; Davidović Mrsić S; Rubelj I
    Biogerontology; 2012 Apr; 13(2):203-13. PubMed ID: 22143823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent positioning of human chromosomes in interphase nuclei.
    Sun HB; Shen J; Yokota H
    Biophys J; 2000 Jul; 79(1):184-90. PubMed ID: 10866946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
    Deng W; Shi X; Tjian R; Lionnet T; Singer RH
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11870-5. PubMed ID: 26324940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome architecture in the decondensing human sperm nucleus.
    Mudrak O; Tomilin N; Zalensky A
    J Cell Sci; 2005 Oct; 118(Pt 19):4541-50. PubMed ID: 16179611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the localization and morphology of chromosomes in the human nucleus.
    Croft JA; Bridger JM; Boyle S; Perry P; Teague P; Bickmore WA
    J Cell Biol; 1999 Jun; 145(6):1119-31. PubMed ID: 10366586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment.
    Gineitis AA; Zalenskaya IA; Yau PM; Bradbury EM; Zalensky AO
    J Cell Biol; 2000 Dec; 151(7):1591-8. PubMed ID: 11134086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.