BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33749829)

  • 1. Vesicle-released glutamate is necessary to maintain muscle spindle afferent excitability but not dynamic sensitivity in adult mice.
    Than K; Kim E; Navarro C; Chu S; Klier N; Occiano A; Ortiz S; Salazar A; Valdespino SR; Villegas NK; Wilkinson KA
    J Physiol; 2021 Jun; 599(11):2953-2967. PubMed ID: 33749829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular determinants of mechanosensation in the muscle spindle.
    Wilkinson KA
    Curr Opin Neurobiol; 2022 Jun; 74():102542. PubMed ID: 35430481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine receptors in the equatorial region of intrafusal muscle fibres modulate mouse muscle spindle sensitivity.
    Gerwin L; Haupt C; Wilkinson KA; Kröger S
    J Physiol; 2019 Apr; 597(7):1993-2006. PubMed ID: 30673133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending.
    Bewick GS; Reid B; Richardson C; Banks RW
    J Physiol; 2005 Jan; 562(Pt 2):381-94. PubMed ID: 15528245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating mechanosensory afferent excitability by an atypical mGluR.
    Watson S
    J Anat; 2015 Aug; 227(2):214-20. PubMed ID: 26053109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharide-induced inflammation does not alter muscle spindle afferent mechanosensation or sensory integration in the spinal cord of adult mice.
    Zaytseva D; Allawala A; Franco JA; Putnam S; Abtahie AM; Bubalo N; Criddle CR; Nguyen TA; Nguyen P; Padmanabhan S; Sanghera P; Bremer M; Abramson T; Wilkinson KA
    Physiol Rep; 2018 Sep; 6(17):e13812. PubMed ID: 30178608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation.
    Wilkinson KA; Kloefkorn HE; Hochman S
    PLoS One; 2012; 7(6):e39140. PubMed ID: 22745708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic-like vesicles and candidate transduction channels in mechanosensory terminals.
    Bewick GS
    J Anat; 2015 Aug; 227(2):194-213. PubMed ID: 26179025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diet induced obesity alters muscle spindle afferent function in adult mice.
    Elahi LS; Shamai KN; Abtahie AM; Cai AM; Padmanabhan S; Bremer M; Wilkinson KA
    PLoS One; 2018; 13(5):e0196832. PubMed ID: 29718979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pudendal afferent innervation of the guinea pig external anal sphincter.
    Lynn PA; Brookes SJ
    Neurogastroenterol Motil; 2011 Sep; 23(9):871-e343. PubMed ID: 21718389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movement reduces the dynamic response of muscle spindle afferents and motoneuron synaptic potentials in rat.
    Haftel VK; Bichler EK; Nichols TR; Pinter MJ; Cope TC
    J Neurophysiol; 2004 May; 91(5):2164-71. PubMed ID: 14695354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence from the use of vibration during procaine nerve block that the spindle group II fibres contribute excitation to the tonic stretch reflex of the decerebrate cat.
    McGrath GJ; Matthews PB
    J Physiol; 1973 Dec; 235(2):371-408. PubMed ID: 4271734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice.
    Spencer NJ; Kerrin A; Singer CA; Hennig GW; Gerthoffer WT; McDonnell O
    Neuroscience; 2008 May; 153(2):518-34. PubMed ID: 18395992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of functional intramuscular rectal mechanoreceptors in aganglionic rectal smooth muscle from piebald lethal mice.
    Spencer NJ; Kerrin A; Zagorodnyuk VP; Hennig GW; Muto M; Brookes SJ; McDonnell O
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G855-67. PubMed ID: 18218672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.
    Carrasco DI; Vincent JA; Cope TC
    J Neurophysiol; 2017 Apr; 117(4):1690-1701. PubMed ID: 28123009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensory encoding in ex vivo muscle-nerve preparations.
    Housley SN; Gardolinski EA; Nardelli P; Reed J; Rich MM; Cope TC
    Exp Physiol; 2024 Jan; 109(1):35-44. PubMed ID: 37119460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signalling of static and dynamic features of muscle spindle input by cuneate neurones in the cat.
    Mackie PD; Morley JW; Zhang HQ; Murray GM; Rowe MJ
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):923-39. PubMed ID: 9660903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions.
    Dessem D; Donga R; Luo P
    J Neurophysiol; 1997 Jun; 77(6):2925-44. PubMed ID: 9212247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of cat muscle spindle primary, secondary and intermediate sensory endings by suxamethonium.
    Dutia MB
    J Physiol; 1980 Jul; 304():315-30. PubMed ID: 6449590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus.
    Zagorodnyuk VP; Chen BN; Costa M; Brookes SJ
    J Physiol; 2003 Dec; 553(Pt 2):575-87. PubMed ID: 14500769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.