These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33749829)

  • 1. Vesicle-released glutamate is necessary to maintain muscle spindle afferent excitability but not dynamic sensitivity in adult mice.
    Than K; Kim E; Navarro C; Chu S; Klier N; Occiano A; Ortiz S; Salazar A; Valdespino SR; Villegas NK; Wilkinson KA
    J Physiol; 2021 Jun; 599(11):2953-2967. PubMed ID: 33749829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular determinants of mechanosensation in the muscle spindle.
    Wilkinson KA
    Curr Opin Neurobiol; 2022 Jun; 74():102542. PubMed ID: 35430481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine receptors in the equatorial region of intrafusal muscle fibres modulate mouse muscle spindle sensitivity.
    Gerwin L; Haupt C; Wilkinson KA; Kröger S
    J Physiol; 2019 Apr; 597(7):1993-2006. PubMed ID: 30673133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending.
    Bewick GS; Reid B; Richardson C; Banks RW
    J Physiol; 2005 Jan; 562(Pt 2):381-94. PubMed ID: 15528245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating mechanosensory afferent excitability by an atypical mGluR.
    Watson S
    J Anat; 2015 Aug; 227(2):214-20. PubMed ID: 26053109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharide-induced inflammation does not alter muscle spindle afferent mechanosensation or sensory integration in the spinal cord of adult mice.
    Zaytseva D; Allawala A; Franco JA; Putnam S; Abtahie AM; Bubalo N; Criddle CR; Nguyen TA; Nguyen P; Padmanabhan S; Sanghera P; Bremer M; Abramson T; Wilkinson KA
    Physiol Rep; 2018 Sep; 6(17):e13812. PubMed ID: 30178608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation.
    Wilkinson KA; Kloefkorn HE; Hochman S
    PLoS One; 2012; 7(6):e39140. PubMed ID: 22745708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic-like vesicles and candidate transduction channels in mechanosensory terminals.
    Bewick GS
    J Anat; 2015 Aug; 227(2):194-213. PubMed ID: 26179025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diet induced obesity alters muscle spindle afferent function in adult mice.
    Elahi LS; Shamai KN; Abtahie AM; Cai AM; Padmanabhan S; Bremer M; Wilkinson KA
    PLoS One; 2018; 13(5):e0196832. PubMed ID: 29718979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pudendal afferent innervation of the guinea pig external anal sphincter.
    Lynn PA; Brookes SJ
    Neurogastroenterol Motil; 2011 Sep; 23(9):871-e343. PubMed ID: 21718389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movement reduces the dynamic response of muscle spindle afferents and motoneuron synaptic potentials in rat.
    Haftel VK; Bichler EK; Nichols TR; Pinter MJ; Cope TC
    J Neurophysiol; 2004 May; 91(5):2164-71. PubMed ID: 14695354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence from the use of vibration during procaine nerve block that the spindle group II fibres contribute excitation to the tonic stretch reflex of the decerebrate cat.
    McGrath GJ; Matthews PB
    J Physiol; 1973 Dec; 235(2):371-408. PubMed ID: 4271734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice.
    Spencer NJ; Kerrin A; Singer CA; Hennig GW; Gerthoffer WT; McDonnell O
    Neuroscience; 2008 May; 153(2):518-34. PubMed ID: 18395992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of functional intramuscular rectal mechanoreceptors in aganglionic rectal smooth muscle from piebald lethal mice.
    Spencer NJ; Kerrin A; Zagorodnyuk VP; Hennig GW; Muto M; Brookes SJ; McDonnell O
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G855-67. PubMed ID: 18218672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.
    Carrasco DI; Vincent JA; Cope TC
    J Neurophysiol; 2017 Apr; 117(4):1690-1701. PubMed ID: 28123009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensory encoding in ex vivo muscle-nerve preparations.
    Housley SN; Gardolinski EA; Nardelli P; Reed J; Rich MM; Cope TC
    Exp Physiol; 2024 Jan; 109(1):35-44. PubMed ID: 37119460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signalling of static and dynamic features of muscle spindle input by cuneate neurones in the cat.
    Mackie PD; Morley JW; Zhang HQ; Murray GM; Rowe MJ
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):923-39. PubMed ID: 9660903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions.
    Dessem D; Donga R; Luo P
    J Neurophysiol; 1997 Jun; 77(6):2925-44. PubMed ID: 9212247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of cat muscle spindle primary, secondary and intermediate sensory endings by suxamethonium.
    Dutia MB
    J Physiol; 1980 Jul; 304():315-30. PubMed ID: 6449590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus.
    Zagorodnyuk VP; Chen BN; Costa M; Brookes SJ
    J Physiol; 2003 Dec; 553(Pt 2):575-87. PubMed ID: 14500769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.