BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33749960)

  • 41. Bovine mitochondrial oxygen consumption effects on oxymyoglobin in the presence of lactate as a substrate for respiration.
    Ramanathan R; Mancini RA; Joseph P; Suman SP
    Meat Sci; 2013 Apr; 93(4):893-7. PubMed ID: 23314615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.
    Kim S; Gu SA; Kim YH; Kim KJ
    Int J Biol Macromol; 2014 Jul; 68():151-7. PubMed ID: 24794195
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel mode of lactate metabolism in strictly anaerobic bacteria.
    Weghoff MC; Bertsch J; Müller V
    Environ Microbiol; 2015 Mar; 17(3):670-7. PubMed ID: 24762045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lactate dehydrogenase isoenzymes of sperm cells and tests.
    Clausen J
    Biochem J; 1969 Jan; 111(2):207-18. PubMed ID: 4303363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. D-lactate dehydrogenase. Substrate specificity and use as a catalyst in the synthesis of homochiral 2-hydroxy acids.
    Simon ES; Plante R; Whitesides GM
    Appl Biochem Biotechnol; 1989 Nov; 22(2):169-79. PubMed ID: 2610514
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relevance of lactate dehydrogenase activity to the control of oxidative glycolysis in pancreatic islet B-cells.
    Jijakli H; Rasschaert J; Nadi AB; Leclercq-Meyer V; Sener A; Malaisse WJ
    Arch Biochem Biophys; 1996 Mar; 327(2):260-4. PubMed ID: 8619612
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Initiation of a superoxide-dependent chain oxidation of lactate dehydrogenase-bound NADH by oxidants of low and high reactivity.
    Petrat F; Bramey T; Kirsch M; De Groot H
    Free Radic Res; 2005 Oct; 39(10):1043-57. PubMed ID: 16298730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic formulations for the oxidation and the reduction of glyoxylate by lactate dehydrogenase.
    Lluis C; Bozal J
    Biochim Biophys Acta; 1977 Feb; 480(2):333-42. PubMed ID: 13838
    [TBL] [Abstract][Full Text] [Related]  

  • 49. d-Lactate Dehydrogenase Links Methylglyoxal Degradation and Electron Transport through Cytochrome c.
    Welchen E; Schmitz J; Fuchs P; García L; Wagner S; Wienstroer J; Schertl P; Braun HP; Schwarzländer M; Gonzalez DH; Maurino VG
    Plant Physiol; 2016 Oct; 172(2):901-912. PubMed ID: 27506242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. L-lactate metabolism in potato tuber mitochondria.
    Paventi G; Pizzuto R; Chieppa G; Passarella S
    FEBS J; 2007 Mar; 274(6):1459-69. PubMed ID: 17489101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidation of NADH via an "external" pathway in skeletal-muscle mitochondria and its possible role in the repayment of lactacid oxygen debt.
    Szczesna-Kaczmarek A; Litwińska D; Popinigis J
    Int J Biochem; 1984; 16(12):1231-5. PubMed ID: 6530010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutamate 264 modulates the pH dependence of the NAD(+)-dependent D-lactate dehydrogenase.
    Kochhar S; Chuard N; Hottinger H
    J Biol Chem; 1992 Oct; 267(28):20298-301. PubMed ID: 1356978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER.
    DAWKINS PD; DICKENS F
    Biochem J; 1965 Feb; 94(2):353-67. PubMed ID: 14346088
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diversity of lactate metabolism in halophilic archaea.
    Oren A; Gurevich P
    Can J Microbiol; 1995 Mar; 41(3):302-7. PubMed ID: 7736359
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. VII. THE ENERGY-REQUIRING REDUCTION OF PYRIDINE NUCLEOTIDE BY SUCCINATE AND THE ENERGY-YIELDING OXIDATION OF REDUCED PYRIDINE NUCLEOTIDE BY FUMARATE.
    SANADI DR; FLUHARTY AL
    Biochemistry; 1963; 2():523-8. PubMed ID: 14069541
    [No Abstract]   [Full Text] [Related]  

  • 56. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR.
    Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H
    J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Affinity chromatography of lactate dehydrogenase on immobilized nucleotides.
    Lowe CR; Dean PD
    Biochem J; 1973 Jul; 133(3):515-20. PubMed ID: 4354740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pyridine nucleotides and rate control.
    Krebs HA
    Symp Soc Exp Biol; 1973; 27():299-318. PubMed ID: 4148884
    [No Abstract]   [Full Text] [Related]  

  • 59. Direct transfer of NADH between alpha-glycerol phosphate dehydrogenase and lactate dehydrogenase: fact or misinterpretation?
    Srivastava DK; Smolen P; Betts GF; Fukushima T; Spivey HO; Bernhard SA
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6464-8. PubMed ID: 2771937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electron transport in phosphorylating mitochondria from Tetrahymena pyriformis strain ST.
    Turner G; Lloyd D; Chance B
    J Gen Microbiol; 1971 Mar; 65(3):359-74. PubMed ID: 4326637
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.