BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33749960)

  • 61. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles.
    Hashimoto T; Hussien R; Cho HS; Kaufer D; Brooks GA
    PLoS One; 2008 Aug; 3(8):e2915. PubMed ID: 18698340
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex.
    Hashimoto T; Hussien R; Brooks GA
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1237-44. PubMed ID: 16434551
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing.
    Sekine N; Cirulli V; Regazzi R; Brown LJ; Gine E; Tamarit-Rodriguez J; Girotti M; Marie S; MacDonald MJ; Wollheim CB
    J Biol Chem; 1994 Feb; 269(7):4895-902. PubMed ID: 8106462
    [TBL] [Abstract][Full Text] [Related]  

  • 64. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Online enzyme discrimination and determination of substrate enantiomers based on electrophoretically mediated microanalysis.
    Zhao W; Tian M; Nie R; Wang Y; Guo L; Yang L
    Anal Chem; 2012 Aug; 84(15):6701-6. PubMed ID: 22746829
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interconversions of mitochondrial pyridine nucleotides.
    Bernofsky C; Utter MF
    Science; 1968 Mar; 159(3821):1362-3. PubMed ID: 4384556
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lactate metabolism in strictly anaerobic microorganisms with a soluble NAD
    Rosenbaum FP; Poehlein A; Egelkamp R; Daniel R; Harder S; Schlüter H; Schoelmerich MC
    Environ Microbiol; 2021 Aug; 23(8):4661-4672. PubMed ID: 34190373
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria.
    Lund BO; Miller DM; Woods JS
    Biochem Pharmacol; 1993 May; 45(10):2017-24. PubMed ID: 8512585
    [TBL] [Abstract][Full Text] [Related]  

  • 69. General ligands in affinity chromatography. Cofactor-substrate elution of enzymes bound to the immobilized nucleotides adenosine 5'-monophosphate and nicotinamide-adenine dinucleotide.
    Mosbach K; Guilford H; Ohlsson R; Scott M
    Biochem J; 1972 May; 127(4):625-31. PubMed ID: 4346743
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate dehydrogenase.
    Chock PB; Gutfreund H
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8870-4. PubMed ID: 3194395
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation and kinetic properties of 5-ethylphenazine-lactate-dehydrogenase-NAD+ conjugate, a semisynthetic lactate oxidase showing a hide-and-seek effect.
    Yomo T; Urabe I; Okada H
    Eur J Biochem; 1992 Feb; 203(3):533-42. PubMed ID: 1735437
    [TBL] [Abstract][Full Text] [Related]  

  • 72. NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in Pseudomonas stutzeri A1501.
    Gao C; Wang Y; Zhang Y; Lv M; Dou P; Xu P; Ma C
    J Bacteriol; 2015 Jul; 197(13):2239-2247. PubMed ID: 25917905
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Covalent binding of 4-hydroxy-2-nonenal to lactate dehydrogenase decreases NADH formation and metmyoglobin reducing activity.
    Ramanathan R; Mancini RA; Suman SP; Beach CM
    J Agric Food Chem; 2014 Mar; 62(9):2112-7. PubMed ID: 24552270
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transport and metabolism of L-lactate occur in mitochondria from cerebellar granule cells and are modified in cells undergoing low potassium dependent apoptosis.
    Atlante A; de Bari L; Bobba A; Marra E; Passarella S
    Biochim Biophys Acta; 2007 Nov; 1767(11):1285-99. PubMed ID: 17950241
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cloning of the Staphylococcus aureus ddh gene encoding NAD+-dependent D-lactate dehydrogenase and insertional inactivation in a glycopeptide-resistant isolate.
    Boyle-Vavra S; de Jonge BL; Ebert CC; Daum RS
    J Bacteriol; 1997 Nov; 179(21):6756-63. PubMed ID: 9352927
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Some kinetic properties of lactate dehydrogenase activity in cell extracts from a mammalian (ovine) corneal epithelium.
    Doughty MJ
    Exp Eye Res; 1998 Feb; 66(2):231-9. PubMed ID: 9533849
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production of racemic lactic acid in Pediococcus cerevisiae cultures by two lactate dehydrogenases.
    Gordon GL; Doelle HW
    J Bacteriol; 1975 Feb; 121(2):600-7. PubMed ID: 234418
    [TBL] [Abstract][Full Text] [Related]  

  • 78. No evidence of an intracellular lactate shuttle in rat skeletal muscle.
    Sahlin K; Fernström M; Svensson M; Tonkonogi M
    J Physiol; 2002 Jun; 541(Pt 2):569-74. PubMed ID: 12042360
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Formation of adducts of pyridine nucleotides in the active center of swine lactate dehydrogenase (isoenzyme M4)].
    Volkova TD; Kalacheva NI; Vorontsov EA; Mal'tsev NI; Shchors EI
    Biokhimiia; 1976 Jan; 41(1):58-67. PubMed ID: 179605
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Overproduction of a 37-kilodalton cytoplasmic protein homologous to NAD+-linked D-lactate dehydrogenase associated with vancomycin resistance in Staphylococcus aureus.
    Milewski WM; Boyle-Vavra S; Moreira B; Ebert CC; Daum RS
    Antimicrob Agents Chemother; 1996 Jan; 40(1):166-72. PubMed ID: 8787900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.