These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33750146)

  • 1. Efficient Highly Subsonic Turbulent Dynamo and Growth of Primordial Magnetic Fields.
    Achikanath Chirakkara R; Federrath C; Trivedi P; Banerjee R
    Phys Rev Lett; 2021 Mar; 126(9):091103. PubMed ID: 33750146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows.
    Federrath C; Chabrier G; Schober J; Banerjee R; Klessen RS; Schleicher DR
    Phys Rev Lett; 2011 Sep; 107(11):114504. PubMed ID: 22026677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulent dynamo in a collisionless plasma.
    Rincon F; Califano F; Schekochihin AA; Valentini F
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3950-3. PubMed ID: 27035981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saturation of the turbulent dynamo.
    Schober J; Schleicher DR; Federrath C; Bovino S; Klessen RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023010. PubMed ID: 26382506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-scale dynamo at low magnetic Prandtl numbers.
    Schober J; Schleicher D; Bovino S; Klessen RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066412. PubMed ID: 23368064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic field amplification in accretion discs around the first stars: implications for the primordial IMF.
    Sharda P; Federrath C; Krumholz MR; Schleicher DRG
    Mon Not R Astron Soc; 2021 May; 503(2):2014-2032. PubMed ID: 33782632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved turbulent dynamo in a laser plasma.
    Bott AFA; Tzeferacos P; Chen L; Palmer CAJ; Rigby A; Bell AR; Bingham R; Birkel A; Graziani C; Froula DH; Katz J; Koenig M; Kunz MW; Li C; Meinecke J; Miniati F; Petrasso R; Park HS; Remington BA; Reville B; Ross JS; Ryu D; Ryutov D; Séguin FH; White TG; Schekochihin AA; Lamb DQ; Gregori G
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33729988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin, evolution and signatures of primordial magnetic fields.
    Subramanian K
    Rep Prog Phys; 2016 Jul; 79(7):076901. PubMed ID: 27243368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma.
    Tzeferacos P; Rigby A; Bott AFA; Bell AR; Bingham R; Casner A; Cattaneo F; Churazov EM; Emig J; Fiuza F; Forest CB; Foster J; Graziani C; Katz J; Koenig M; Li CK; Meinecke J; Petrasso R; Park HS; Remington BA; Ross JS; Ryu D; Ryutov D; White TG; Reville B; Miniati F; Schekochihin AA; Lamb DQ; Froula DH; Gregori G
    Nat Commun; 2018 Feb; 9(1):591. PubMed ID: 29426891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axion-Driven Cosmic Magnetogenesis during the QCD Crossover.
    Miniati F; Gregori G; Reville B; Sarkar S
    Phys Rev Lett; 2018 Jul; 121(2):021301. PubMed ID: 30085728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of primordial magnetic fields on linear overdensity scales.
    Naoz S; Narayan R
    Phys Rev Lett; 2013 Aug; 111(5):051303. PubMed ID: 23952384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulence and magnetic fields in the large-scale structure of the universe.
    Ryu D; Kang H; Cho J; Das S
    Science; 2008 May; 320(5878):909-12. PubMed ID: 18487187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.
    Park K; Blackman EG; Subramanian K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053110. PubMed ID: 23767646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic dynamo action at low magnetic Prandtl numbers.
    Malyshkin LM; Boldyrev S
    Phys Rev Lett; 2010 Nov; 105(21):215002. PubMed ID: 21231310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo.
    Mininni P; Alexakis A; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046302. PubMed ID: 16383528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic field amplification by small-scale dynamo action: dependence on turbulence models and Reynolds and Prandtl numbers.
    Schober J; Schleicher D; Federrath C; Klessen R; Banerjee R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026303. PubMed ID: 22463313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Not much helicity is needed to drive large-scale dynamos.
    Pietarila Graham J; Blackman EG; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066406. PubMed ID: 23005227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuation dynamo and turbulent induction at small Prandtl number.
    Eyink GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046314. PubMed ID: 21230397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
    Hotta H; Rempel M; Yokoyama T
    Science; 2016 Mar; 351(6280):1427-30. PubMed ID: 27013727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear turbulent dynamo induced by fluctuations of the Lorentz force.
    Mizerski KA
    Phys Rev E; 2021 Nov; 104(5):L053102. PubMed ID: 34942826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.