These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 33750397)
1. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Boecker S; Harder BJ; Kutscha R; Pflügl S; Klamt S Microb Cell Fact; 2021 Mar; 20(1):63. PubMed ID: 33750397 [TBL] [Abstract][Full Text] [Related]
2. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli. Boecker S; Zahoor A; Schramm T; Link H; Klamt S Biotechnol J; 2019 Sep; 14(9):e1800438. PubMed ID: 30927494 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering of Liu Y; Cen X; Liu D; Chen Z ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Escherichia coli for biological production of 1, 3-Butanediol. Islam T; Nguyen-Vo TP; Gaur VK; Lee J; Park S Bioresour Technol; 2023 May; 376():128911. PubMed ID: 36934906 [TBL] [Abstract][Full Text] [Related]
5. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor. Yamada R; Nishikawa R; Wakita K; Ogino H J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870 [TBL] [Abstract][Full Text] [Related]
6. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Hädicke O; Bettenbrock K; Klamt S Biotechnol Bioeng; 2015 Oct; 112(10):2195-9. PubMed ID: 25899755 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Lee S; Kim B; Park K; Um Y; Lee J Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350 [TBL] [Abstract][Full Text] [Related]
8. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Shin HD; Yoon SH; Wu J; Rutter C; Kim SW; Chen RR Bioresour Technol; 2012 Aug; 118():367-73. PubMed ID: 22705958 [TBL] [Abstract][Full Text] [Related]
9. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. Lee YG; Bae JM; Kim SJ J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291 [TBL] [Abstract][Full Text] [Related]
10. Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting. Yatabe F; Seike T; Okahashi N; Ishii J; Matsuda F Microb Cell Fact; 2023 Oct; 22(1):204. PubMed ID: 37807050 [TBL] [Abstract][Full Text] [Related]
11. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis. Dias BDC; Lima MEDNV; Vollú RE; da Mota FF; da Silva AJR; de Castro AM; Freire DMG; Seldin L Appl Microbiol Biotechnol; 2018 Oct; 102(20):8773-8782. PubMed ID: 30121751 [TBL] [Abstract][Full Text] [Related]
12. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862 [TBL] [Abstract][Full Text] [Related]
13. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654 [TBL] [Abstract][Full Text] [Related]
14. Metabolic Engineering of Qin N; Zhu F; Liu Y; Liu D; Chen Z ACS Synth Biol; 2024 Jan; 13(1):351-357. PubMed ID: 38110368 [TBL] [Abstract][Full Text] [Related]
15. Development of a commercial scale process for production of 1,4-butanediol from sugar. Burgard A; Burk MJ; Osterhout R; Van Dien S; Yim H Curr Opin Biotechnol; 2016 Dec; 42():118-125. PubMed ID: 27132123 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Kim SJ; Kim JW; Lee YG; Park YC; Seo JH Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883 [TBL] [Abstract][Full Text] [Related]
18. Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase. Cho S; Kim T; Woo HM; Lee J; Kim Y; Um Y PLoS One; 2015; 10(9):e0138109. PubMed ID: 26368397 [TBL] [Abstract][Full Text] [Related]
19. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Kay JE; Jewett MC Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449 [TBL] [Abstract][Full Text] [Related]
20. Achievements and Perspectives in 1,4-Butanediol Production from Engineered Microorganisms. Cheng J; Li J; Zheng L J Agric Food Chem; 2021 Sep; 69(36):10480-10485. PubMed ID: 34478293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]