These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3375056)

  • 1. Early melting of supercoiled DNA.
    Lyubchenko YuL ; Shlyakhtenko LS
    Nucleic Acids Res; 1988 Apr; 16(8):3269-81. PubMed ID: 3375056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early melting of supercoiled DNA topoisomers observed by TGGE.
    Víglaský V; Antalík M; Adamcík J; Podhradský D
    Nucleic Acids Res; 2000 Jun; 28(11):E51. PubMed ID: 10871350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules.
    Cebrián J; Kadomatsu-Hermosa MJ; Castán A; Martínez V; Parra C; Fernández-Nestosa MJ; Schaerer C; Martínez-Robles ML; Hernández P; Krimer DB; Stasiak A; Schvartzman JB
    Nucleic Acids Res; 2015 Feb; 43(4):e24. PubMed ID: 25414338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale opening of A + T rich regions within supercoiled DNA molecules is suppressed by salt.
    Bowater RP; Aboul-ela F; Lilley DM
    Nucleic Acids Res; 1994 Jun; 22(11):2042-50. PubMed ID: 8029010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the number of superhelical turns by the hyperchromicity of partially denatured covalently-closed DNA molecules.
    Dougherty G; Koller T
    Nucleic Acids Res; 1982 Jan; 10(2):525-38. PubMed ID: 6895940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of alkali-denatured supercoiled plasmid DNA by atomic force microscopy.
    Yu J; Zhang Z; Cao K; Huang X
    Biochem Biophys Res Commun; 2008 Sep; 374(3):415-8. PubMed ID: 18602366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting.
    Fosado YAG; Michieletto D; Marenduzzo D
    Phys Rev Lett; 2017 Sep; 119(11):118002. PubMed ID: 28949232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Winding of the DNA helix by divalent metal ions.
    Xu YC; Bremer H
    Nucleic Acids Res; 1997 Oct; 25(20):4067-71. PubMed ID: 9321659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bacteria growth temperature on the distribution of supercoiled DNA and its thermal stability.
    Adamcík J; Víglaský V; Valle F; Antalík M; Podhradský D; Dietler G
    Electrophoresis; 2002 Sep; 23(19):3300-9. PubMed ID: 12373757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torsional stress and local denaturation in supercoiled DNA.
    Benham CJ
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3870-4. PubMed ID: 226985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the B-A transition in DNA by gel electrophoresis.
    Shlyakhtenko LS
    J Biomol Struct Dyn; 1984 Jun; 1(6):1511-23. PubMed ID: 6400832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA and lengthen linear DNA.
    Verebová V; Adamcik J; Danko P; Podhradský D; Miškovský P; Staničová J
    Biochem Biophys Res Commun; 2014 Jan; 444(1):50-5. PubMed ID: 24434150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range structural effects in supercoiled DNA: statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion.
    Schaeffer F; Yeramian E; Lilley DM
    Biopolymers; 1989 Aug; 28(8):1449-73. PubMed ID: 2752100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions.
    Riesner D; Steger G; Zimmat R; Owens RA; Wagenhöfer M; Hillen W; Vollbach S; Henco K
    Electrophoresis; 1989; 10(5-6):377-89. PubMed ID: 2475340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential binding of the archaebacterial histone-like MC1 protein to negatively supercoiled DNA minicircles.
    Teyssier C; Toulmé F; Touzel JP; Gervais A; Maurizot JC; Culard F
    Biochemistry; 1996 Jun; 35(24):7954-8. PubMed ID: 8672498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-dependent melting of supercoiled DNA at thermophilic temperatures.
    Galburt EA; Tomko EJ; Stump WT; Ruiz Manzano A
    Biophys Chem; 2014; 187-188():23-8. PubMed ID: 24486433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Formation of cruciform structures in pAO3 plasmid DNA on increasing superhelical density].
    Paniutin IG; Liamichev VI; Liubchenko IuL
    Mol Biol (Mosk); 1983; 17(3):667-77. PubMed ID: 6308419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of supercoiled DNA in gel electrophoresis. The V-like dependence of mobility on topological constraint. DNA-matrix interactions.
    Zivanovic Y; Goulet I; Prunell A
    J Mol Biol; 1986 Dec; 192(3):645-60. PubMed ID: 3560230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Localization of melted regions in supercoiled DNA by means of chemical modification].
    Voloshin ON; Liubchenko IuL; Shliakhtenko LS
    Bioorg Khim; 1988 Dec; 14(12):1700-3. PubMed ID: 3251468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Migration properties of circular DNAs using orthogonal-field-alternation gel electrophoresis.
    Hightower RC; Santi DV
    Electrophoresis; 1989; 10(5-6):283-90. PubMed ID: 2670543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.