These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33750581)

  • 1. Event-driven enabled regression aided multi-loop control for SEC minimisation in SWRO desalination considering salinity variation.
    Joseph A; Damodaran V
    ISA Trans; 2022 Jan; 119():221-241. PubMed ID: 33750581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opportunities of Reducing the Energy Consumption of Seawater Reverse Osmosis Desalination by Exploiting Salinity Gradients.
    Aumesquet-Carreto MÁ; Ortega-Delgado B; García-Rodríguez L
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.
    Hancock NT; Black ND; Cath TY
    Water Res; 2012 Mar; 46(4):1145-54. PubMed ID: 22209275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination.
    Park K; Kim DY; Jang YH; Kim MG; Yang DR; Hong S
    Water Res; 2020 Mar; 171():115426. PubMed ID: 31887548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seawater Reverse Osmosis Performance Decline Caused by Short-Term Elevated Feed Water Temperature.
    Altmann T; Buijs PJ; Farinha ASF; Borges VRP; Farhat NM; Vrouwenvelder JS; Das R
    Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Hypersaline Brine Desalination Using Spiral Wound Membrane: A Parametric Study.
    Foo K; Liang YY; Lau WJ; Khan MMR; Ahmad AL
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards sustainable circular brine reclamation using seawater reverse osmosis, membrane distillation and forward osmosis hybrids: An experimental investigation.
    Son HS; Soukane S; Lee J; Kim Y; Kim YD; Ghaffour N
    J Environ Manage; 2021 Sep; 293():112836. PubMed ID: 34052611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the specific energy consumption of 1st-pass SWRO by application of high-flux membranes fed with high-pH, decarbonated seawater.
    Ophek L; Birnhack L; Nir O; Binshtein E; Lahav O
    Water Res; 2015 Nov; 85():185-92. PubMed ID: 26318651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.
    Chen X; Yip NY
    Environ Sci Technol; 2018 Feb; 52(4):2242-2250. PubMed ID: 29357240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant.
    Feinberg BJ; Ramon GZ; Hoek EM
    Environ Sci Technol; 2013 Mar; 47(6):2982-9. PubMed ID: 23331042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination.
    Wang J; Sim LN; Ho JS; Nakano K; Kinoshita Y; Sekiguchi K; Chong TH
    Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of sewage outbursts on seawater reverse osmosis desalination.
    Bar-Zeev E; Belkin N; Speter A; Reich T; Geisler E; Rahav E
    Water Res; 2021 Oct; 204():117631. PubMed ID: 34536688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical Considerations of Wastewater-Seawater Integrated Reverse Osmosis: Design Constraint by Boron Removal.
    Lee C; Kang Y; Kim DH; Kim IS
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33800604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental sustainability assessment of seawater reverse osmosis brine valorization by means of electrodialysis with bipolar membranes.
    Herrero-Gonzalez M; Admon N; Dominguez-Ramos A; Ibañez R; Wolfson A; Irabien A
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1256-1266. PubMed ID: 30919196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.
    Phuc BDH; You SS; Choi HS; Jeong SK
    Water Environ Res; 2017 Nov; 89(11):1932-1941. PubMed ID: 29080563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of feed salinity on the biofouling dynamics of seawater desalination.
    Yang HL; Pan JR; Huang C; Lin JC
    Biofouling; 2011 May; 27(5):561-7. PubMed ID: 21644114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operational optimization of large-scale parallel-unit SWRO desalination plant using differential evolution algorithm.
    Wang J; Wang X; Jiang A; Jiangzhou S; Li P
    ScientificWorldJournal; 2014; 2014():584068. PubMed ID: 24701180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation.
    Rosentreter H; Walther M; Lerch A
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33673190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type.
    Kumar M; Adham SS; Pearce WR
    Environ Sci Technol; 2006 Mar; 40(6):2037-44. PubMed ID: 16570633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.