These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33750713)

  • 1. MLDEG: A Machine Learning Approach to Identify Differentially Expressed Genes Using Network Property and Network Propagation.
    Moon JH; Lee S; Pak M; Hur B; Kim S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2356-2364. PubMed ID: 33750713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CEDER: accurate detection of differentially expressed genes by combining significance of exons using RNA-Seq.
    Wan L; Sun F
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1281-92. PubMed ID: 22641709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning.
    Mahin KF; Robiuddin M; Islam M; Ashraf S; Yeasmin F; Shatabda S
    Genomics; 2022 Mar; 114(2):110264. PubMed ID: 34998929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The characteristic direction: a geometrical approach to identify differentially expressed genes.
    Clark NR; Hu KS; Feldmann AS; Kou Y; Chen EY; Duan Q; Ma'ayan A
    BMC Bioinformatics; 2014 Mar; 15():79. PubMed ID: 24650281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq assistant: machine learning based methods to identify more transcriptional regulated genes.
    Wang L; Xi Y; Sung S; Qiao H
    BMC Genomics; 2018 Jul; 19(1):546. PubMed ID: 30029596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. bestDEG: a web-based application automatically combines various tools to precisely predict differentially expressed genes (DEGs) from RNA-Seq data.
    Sangket U; Yodsawat P; Nuanpirom J; Sathapondecha P
    PeerJ; 2022; 10():e14344. PubMed ID: 36389403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data.
    Vandenbon A; Diez D
    Nat Commun; 2020 Aug; 11(1):4318. PubMed ID: 32859930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network module-based model in the differential expression analysis for RNA-seq.
    Lei M; Xu J; Huang LC; Wang L; Li J
    Bioinformatics; 2017 Sep; 33(17):2699-2705. PubMed ID: 28407034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MSPJ: Discovering potential biomarkers in small gene expression datasets
    Yin H; Tao J; Peng Y; Xiong Y; Li B; Li S; Yang H
    Comput Struct Biotechnol J; 2022; 20():3783-3795. PubMed ID: 35891786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HelPredictor models single-cell transcriptome to predict human embryo lineage allocation.
    Liang P; Zheng L; Long C; Yang W; Yang L; Zuo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Solutions: Synthesizing Information to Support Transcriptomics (RNASSIST).
    Chen YP; Ferguson LB; Salem NA; Zheng G; Mayfield RD; Eslami M
    Bioinformatics; 2022 Jan; 38(2):397-403. PubMed ID: 34570193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network-based multi-task learning models for biomarker selection and cancer outcome prediction.
    Wang Z; He Z; Shah M; Zhang T; Fan D; Zhang W
    Bioinformatics; 2020 Mar; 36(6):1814-1822. PubMed ID: 31688914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clover: An unbiased method for prioritizing differentially expressed genes using a data-driven approach.
    Oba GM; Nakato R
    Genes Cells; 2024 Jun; 29(6):456-470. PubMed ID: 38602264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of genetic classification model for coronary atherosclerosis heart disease using three machine learning methods.
    Peng W; Sun Y; Zhang L
    BMC Cardiovasc Disord; 2022 Feb; 22(1):42. PubMed ID: 35151267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venn-diaNet : venn diagram based network propagation analysis framework for comparing multiple biological experiments.
    Hur B; Kang D; Lee S; Moon JH; Lee G; Kim S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):667. PubMed ID: 31881980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data.
    Dill-McFarland KA; Mitchell K; Batchu S; Segnitz RM; Benson B; Janczyk T; Cox MS; Mayanja-Kizza H; Boom WH; Benchek P; Stein CM; Hawn TR; Altman MC
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37140544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HE2Gene: image-to-RNA translation via multi-task learning for spatial transcriptomics data.
    Chen X; Lin J; Wang Y; Zhang W; Xie W; Zheng Z; Wong KC
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38837395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis.
    Shen S; Kong J; Qiu Y; Yang X; Wang W; Yan L
    J Cell Biochem; 2019 Jun; 120(6):10069-10081. PubMed ID: 30525236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.