These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33750812)

  • 1. A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys.
    Mamun O; Wenzlick M; Hawk J; Devanathan R
    Sci Rep; 2021 Mar; 11(1):5466. PubMed ID: 33750812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalog of NIMS creep data sheets.
    Sawada K; Kimura K; Abe F; Taniuchi Y; Sekido K; Nojima T; Ohba T; Kushima H; Miyazaki H; Hongo H; Watanabe T
    Sci Technol Adv Mater; 2019; 20(1):1131-1149. PubMed ID: 32082436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm.
    Liu C; Wang X; Cai W; Yang J; Su H
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Mechanical and Corrosion Properties of Powder Metallurgy Austenitic, Ferritic, and Martensitic Stainless Steels by Liquid Phase Sintering.
    Ku MH; Tsao LC; Tsai YJ; Lin ZJ; Wu MW
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty quantification for Bayesian active learning in rupture life prediction of ferritic steels.
    Mamun O; Taufique MFN; Wenzlick M; Hawk J; Devanathan R
    Sci Rep; 2022 Feb; 12(1):2083. PubMed ID: 35136127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Neutron Irradiation on the Mechanical Properties, Swelling and Creep of Austenitic Stainless Steels.
    Griffiths M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems.
    Zhou XW; Foster ME; Sills RB
    J Comput Chem; 2018 Nov; 39(29):2420-2431. PubMed ID: 30379326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep-resistant, Al2O3-forming austenitic stainless steels.
    Yamamoto Y; Brady MP; Lu ZP; Maziasz PJ; Liu CT; Pint BA; More KL; Meyer HM; Payzant EA
    Science; 2007 Apr; 316(5823):433-6. PubMed ID: 17446398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Treatment of High-Performance Ferritic (HiperFer) Steels.
    Kuhn B; Talik M
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dataset for machine learning of microstructures for 9% Cr steels.
    Rozman KA; Doğan ÖN; Chinn R; Jablonksi PD; Detrois M; Gao MC
    Data Brief; 2022 Dec; 45():108714. PubMed ID: 36425963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of large magnetostructural effects in austenitic stainless steels.
    Vitos L; Korzhavyi PA; Johansson B
    Phys Rev Lett; 2006 Mar; 96(11):117210. PubMed ID: 16605866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Machine Learning Approach for Modelling Cold-Rolling Curves for Various Stainless Steels.
    Contreras-Fortes J; Rodríguez-García MI; Sales DL; Sánchez-Miranda R; Almagro JF; Turias I
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic reasoning for colossal N supersaturation in austenitic and ferritic stainless steels during low-temperature nitridation.
    Sasidhar KN; Meka SR
    Sci Rep; 2019 May; 9(1):7996. PubMed ID: 31142759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels.
    Pańcikiewicz K; Świerczyńska A; Hućko P; Tumidajewicz M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior Creep Resistance and Remnant Strength of Novel Tempered Ferritic-Martensitic Steels Designed by Element Addition.
    Wang H; Li K; Chen W; Han L; Feng Y
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution.
    Yu Y; Shironita S; Souma K; Umeda M
    Heliyon; 2018 Nov; 4(11):e00958. PubMed ID: 30839865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into Structural Changes and Electrochemical Properties of Spark Plasma Sintered Nanostructured Ferritic and Austenitic Stainless Steels.
    Ahmed J; Toor IU; Hussein MA; Al-Aqeeli N; Baig MMA
    Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Features of Martensitic Transformation in 12% Chromium Ferritic-Martensitic Steels.
    Bazaleeva K; Golubnichiy A; Chernov A; Ni A; Mendagaliyev R
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.