These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33750816)

  • 41. Resettable sweat-powered wearable electrochromic biosensor.
    Hartel MC; Lee D; Weiss PS; Wang J; Kim J
    Biosens Bioelectron; 2022 Nov; 215():114565. PubMed ID: 35926393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation.
    Ryu J; Landers M; Choi S
    Biosens Bioelectron; 2022 Jun; 205():114128. PubMed ID: 35231752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy Harvesting and Signal Sensing.
    Ma L; Zhou M; Wu R; Patil A; Gong H; Zhu S; Wang T; Zhang Y; Shen S; Dong K; Yang L; Wang J; Guo W; Wang ZL
    ACS Nano; 2020 Apr; 14(4):4716-4726. PubMed ID: 32255615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors.
    Islam MR; Afroj S; Karim N
    ACS Nano; 2023 Sep; 17(18):18481-18493. PubMed ID: 37695696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth.
    Yin S; Jin Z; Miyake T
    Biosens Bioelectron; 2019 Sep; 141():111471. PubMed ID: 31252257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect.
    Tao X; Zhou Y; Qi K; Guo C; Dai Y; He J; Dai Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2339-2346. PubMed ID: 34774315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microelectronic fibers for multiplexed sweat sensing.
    Wu J; Sato Y; Guo Y
    Anal Bioanal Chem; 2023 Jul; 415(18):4307-4318. PubMed ID: 36622394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward.
    Dolez PI
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring.
    Li S; Li H; Lu Y; Zhou M; Jiang S; Du X; Guo C
    Biosensors (Basel); 2023 Sep; 13(10):. PubMed ID: 37887102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring.
    Haddad PA; Servati A; Soltanian S; Ko F; Servati P
    Biosensors (Basel); 2018 Aug; 8(3):. PubMed ID: 30149594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applications of nanotechnology in smart textile industry: A critical review.
    Shah MA; Pirzada BM; Price G; Shibiru AL; Qurashi A
    J Adv Res; 2022 May; 38():55-75. PubMed ID: 35572402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte.
    Manjakkal L; Pullanchiyodan A; Yogeswaran N; Hosseini ES; Dahiya R
    Adv Mater; 2020 Jun; 32(24):e1907254. PubMed ID: 32390218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring.
    Lou M; Abdalla I; Zhu M; Yu J; Li Z; Ding B
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1597-1605. PubMed ID: 31840486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications.
    Manjakkal L; Dang W; Yogeswaran N; Dahiya R
    Biosensors (Basel); 2019 Jan; 9(1):. PubMed ID: 30654478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites.
    Wu C; Kim TW; Li F; Guo T
    ACS Nano; 2016 Jul; 10(7):6449-57. PubMed ID: 27284809
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bio-inspired fractal textile device for rapid sweat collection and monitoring.
    Chen YC; Shan SS; Liao YT; Liao YC
    Lab Chip; 2021 Jun; 21(13):2524-2533. PubMed ID: 34105558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat.
    Bandodkar AJ; Gutruf P; Choi J; Lee K; Sekine Y; Reeder JT; Jeang WJ; Aranyosi AJ; Lee SP; Model JB; Ghaffari R; Su CJ; Leshock JP; Ray T; Verrillo A; Thomas K; Krishnamurthi V; Han S; Kim J; Krishnan S; Hang T; Rogers JA
    Sci Adv; 2019 Jan; 5(1):eaav3294. PubMed ID: 30746477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electronic Textiles for Wearable Point-of-Care Systems.
    Chen G; Xiao X; Zhao X; Tat T; Bick M; Chen J
    Chem Rev; 2022 Feb; 122(3):3259-3291. PubMed ID: 34939791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perspiration permeable, textile embeddable microfluidic sweat sensor.
    Liu M; Wang S; Xiong Z; Zheng Z; Ma N; Li L; Gao Q; Ge C; Wang Y; Zhang T
    Biosens Bioelectron; 2023 Oct; 237():115504. PubMed ID: 37406481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.