These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33750875)

  • 1. On the feasibility of hearing electrons in a 1D device through emitted phonons.
    Verma A; Nekovei R; Kauser Z
    Sci Rep; 2021 Mar; 11(1):5452. PubMed ID: 33750875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confined and interface optical phonon emission in GaN/InGaN double barrier quantum well heterostructures.
    Mohamed A; Park K; Bayram C; Dutta M; Stroscio M
    PLoS One; 2019; 14(4):e0214971. PubMed ID: 30998702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo Study of Electronic Transport in Monolayer InSe.
    Gopalan S; Gaddemane G; Put MLV; Fischetti AMV
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Scattering via Interface Optical Phonons with High Group Velocity in Wurtzite GaN-based Quantum Well Heterostructure.
    Park K; Mohamed A; Dutta M; Stroscio MA; Bayram C
    Sci Rep; 2018 Oct; 8(1):15947. PubMed ID: 30374108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-phonon interactions and the intrinsic electrical resistivity of graphene.
    Park CH; Bonini N; Sohier T; Samsonidze G; Kozinsky B; Calandra M; Mauri F; Marzari N
    Nano Lett; 2014 Mar; 14(3):1113-9. PubMed ID: 24524418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical generation and absorption of phonons in carbon nanotubes.
    Leroy BJ; Lemay SG; Kong J; Dekker C
    Nature; 2004 Nov; 432(7015):371-4. PubMed ID: 15549099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation.
    Martinez A; Barker JR
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-consistent quantum-kinetic theory for interacting drifting electrons and force-driven phonons in a 1D system.
    Lu X; Huang D
    J Phys Condens Matter; 2024 Feb; 36(20):. PubMed ID: 38324913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying the lifetime of charge and heat carriers due to intrinsic scattering mechanisms in FeVSb half-Heusler thermoelectric.
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2021 Jun; 33(26):. PubMed ID: 33887717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Transport Properties of Silicane Determined from First Principles.
    Khatami MM; Gaddemane G; Van de Put ML; Fischetti MV; Moravvej-Farshi MK; Pourfath M; Vandenberghe WG
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K-point longitudinal acoustic phonons are responsible for ultrafast intervalley scattering in monolayer MoSe
    Bae S; Matsumoto K; Raebiger H; Shudo KI; Kim YH; Handegård ØS; Nagao T; Kitajima M; Sakai Y; Zhang X; Vajtai R; Ajayan P; Kono J; Takeda J; Katayama I
    Nat Commun; 2022 Jul; 13(1):4279. PubMed ID: 35879336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-phonon coupling in a double-stranded model of DNA.
    Peralta M; Feijoo S; Varela S; Gutierrez R; Cuniberti G; Mujica V; Medina E
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37449581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Spectroscopy of Fano-Like Resonance between Optical Phonon and Excitons in CdSe Quantum Dots: Dependence of Coherent Vibrational Wave-Packet Dynamics on Pump Fluence.
    Nadtochenko V; Denisov N; Aybush A; Gostev F; Shelaev I; Titov A; Umanskiy S; Cherepanov AD
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of Phonon Transport in Thermoelectrics.
    Chen Z; Zhang X; Pei Y
    Adv Mater; 2018 Apr; 30(17):e1705617. PubMed ID: 29399915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single mode phonon energy transmission in functionalized carbon nanotubes.
    Lee J; Varshney V; Roy AK; Farmer BL
    J Chem Phys; 2011 Sep; 135(10):104109. PubMed ID: 21932878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent Discriminatory Modal Manipulation of Acoustic Phonons at the Nanoscale.
    Yu SJ; Ouyang M
    Nano Lett; 2018 Feb; 18(2):1124-1129. PubMed ID: 29314852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Boron Doping on the Bulk and Surface Acoustic Phonons in Single-Crystal Diamond.
    Guzman E; Kargar F; Angeles F; Meidanshahi RV; Grotjohn T; Hardy A; Muehle M; Wilson RB; Goodnick SM; Balandin AA
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42223-42231. PubMed ID: 36083635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon-drag thermopower and hot-electron energy-loss rate in a Rashba spin-orbit coupled two-dimensional electron system.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Jul; 25(26):265301. PubMed ID: 23751509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.