These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33751024)

  • 1. Thirteen Questions About Using Machine Learning in Causal Research (You Won't Believe the Answer to Number 10!).
    Mooney SJ; Keil AP; Westreich DJ
    Am J Epidemiol; 2021 Aug; 190(8):1476-1482. PubMed ID: 33751024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
    Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M
    Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning.
    Díaz I
    Biostatistics; 2020 Apr; 21(2):353-358. PubMed ID: 31742333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AIPW: An R Package for Augmented Inverse Probability-Weighted Estimation of Average Causal Effects.
    Zhong Y; Kennedy EH; Bodnar LM; Naimi AI
    Am J Epidemiol; 2021 Dec; 190(12):2690-2699. PubMed ID: 34268567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Epidemiologic Toolbox: Identifying, Honing, and Using the Right Tools for the Job.
    Lesko CR; Keil AP; Edwards JK
    Am J Epidemiol; 2020 Jun; 189(6):511-517. PubMed ID: 32207771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning outcome regression improves doubly robust estimation of average causal effects.
    Choi BY; Wang CP; Gelfond J
    Pharmacoepidemiol Drug Saf; 2020 Sep; 29(9):1120-1133. PubMed ID: 32716126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference.
    Blakely T; Lynch J; Simons K; Bentley R; Rose S
    Int J Epidemiol; 2021 Jan; 49(6):2058-2064. PubMed ID: 31298274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning for Causal Inference: On the Use of Cross-fit Estimators.
    Zivich PN; Breskin A
    Epidemiology; 2021 May; 32(3):393-401. PubMed ID: 33591058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted maximum likelihood estimation for a binary treatment: A tutorial.
    Luque-Fernandez MA; Schomaker M; Rachet B; Schnitzer ME
    Stat Med; 2018 Jul; 37(16):2530-2546. PubMed ID: 29687470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal models adjusting for time-varying confounding-a systematic review of the literature.
    Clare PJ; Dobbins TA; Mattick RP
    Int J Epidemiol; 2019 Feb; 48(1):254-265. PubMed ID: 30358847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invited Commentary: Machine Learning in Causal Inference-How Do I Love Thee? Let Me Count the Ways.
    Balzer LB; Petersen ML
    Am J Epidemiol; 2021 Aug; 190(8):1483-1487. PubMed ID: 33751059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-World Evidence, Causal Inference, and Machine Learning.
    Crown WH
    Value Health; 2019 May; 22(5):587-592. PubMed ID: 31104739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching.
    Kreif N; Gruber S; Radice R; Grieve R; Sekhon JS
    Stat Methods Med Res; 2016 Oct; 25(5):2315-2336. PubMed ID: 24525488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial.
    Smith MJ; Mansournia MA; Maringe C; Zivich PN; Cole SR; Leyrat C; Belot A; Rachet B; Luque-Fernandez MA
    Stat Med; 2022 Jan; 41(2):407-432. PubMed ID: 34713468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving propensity score estimators' robustness to model misspecification using super learner.
    Pirracchio R; Petersen ML; van der Laan M
    Am J Epidemiol; 2015 Jan; 181(2):108-19. PubMed ID: 25515168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistent causal effect estimation under dual misspecification and implications for confounder selection procedures.
    Gruber S; van der Laan MJ
    Stat Methods Med Res; 2015 Dec; 24(6):1003-8. PubMed ID: 22368176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal Methods for Observational Research: A Primer.
    Almasi-Hashiani A; Nedjat S; Mansournia MA
    Arch Iran Med; 2018 Apr; 21(4):164-169. PubMed ID: 29693407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal Inference.
    Schnitzer ME; Lok JJ; Gruber S
    Int J Biostat; 2016 May; 12(1):97-115. PubMed ID: 26226129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding and diagnosing the potential for bias when using machine learning methods with doubly robust causal estimators.
    Bahamyirou A; Blais L; Forget A; Schnitzer ME
    Stat Methods Med Res; 2019 Jun; 28(6):1637-1650. PubMed ID: 29717941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.