These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33751182)

  • 1. The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia.
    Mucha S; Chapman LJ; Krahe R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 May; 207(3):369-379. PubMed ID: 33751182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hypoxia on swimming and sensing in a weakly electric fish.
    Ackerly KL; Krahe R; Sanford CP; Chapman LJ
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 30018158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradual frequency rises in interacting black ghost knifefish, Apteronotus albifrons.
    Serrano-Fernández P
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Sep; 189(9):685-92. PubMed ID: 12898168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity in the structure of electrocommunication signals within a genus of electric fish, Apteronotus.
    Dunlap KD; Larkins-Ford J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):153-61. PubMed ID: 12607044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-citrulline immunoreactivity reveals nitric oxide production in the electromotor and electrosensory systems of the weakly electric fish, Apteronotus leptorhynchus.
    Smith GT; Allen AR; Oestreich J; Gammie SC
    Brain Behav Evol; 2005; 65(1):1-13. PubMed ID: 15489561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates.
    Heiligenberg W; Metzner W; Wong CJ; Keller CH
    J Comp Physiol A; 1996 Nov; 179(5):653-74. PubMed ID: 8888577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behaviour of rainbow trout Oncorhynchus mykiss presented with a choice of normoxia and stepwise progressive hypoxia.
    Poulsen SB; Jensen LF; Nielsen KS; Malte H; Aarestrup K; Svendsen JC
    J Fish Biol; 2011 Oct; 79(4):969-79. PubMed ID: 21967584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of normoxia exposure on hypoxia tolerance and sensory sampling in a swamp-dwelling mormyrid fish.
    Clarke SB; Chapman LJ; Krahe R
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Feb; 240():110586. PubMed ID: 31648062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and receptive field organization of a temporal processing region in Apteronotus albifrons.
    Leonard J; Matsushita A; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 May; 208(3):405-420. PubMed ID: 35233699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors.
    Youngerman ED; Flammang BE; Lauder GV
    Zoology (Jena); 2014 Oct; 117(5):337-48. PubMed ID: 25043841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity.
    MacIver MA; Sharabash NM; Nelson ME
    J Exp Biol; 2001 Feb; 204(Pt 3):543-57. PubMed ID: 11171305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L.
    McKenzie DJ; Steffensen JF; Taylor EW; Abe AS
    J Exp Biol; 2012 Apr; 215(Pt 8):1323-30. PubMed ID: 22442370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the Kármán gait: knifefish swimming in periodic and irregular vortex streets.
    Ortega-Jiménez VM; Sanford CP
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 33795417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen consumption in weakly electric Neotropical fishes.
    Julian D; Crampton WG; Wohlgemuth SE; Albert JS
    Oecologia; 2003 Dec; 137(4):502-11. PubMed ID: 14505027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.