These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33751182)

  • 21. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts.
    Thomas RA; Metzen MG; Chacron MJ
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29954835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia.
    Urbina MA; Forster ME; Glover CN
    Physiol Behav; 2011 May; 103(2):240-7. PubMed ID: 21316378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus.
    Dunlap KD; Thomas P; Zakon HH
    J Comp Physiol A; 1998 Jul; 183(1):77-86. PubMed ID: 9691480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NADPH-diaphorase activity and nitric oxide synthase-like immunoreactivity colocalize in the electromotor system of four species of gymnotiform fish.
    Smith GT; Unguez GA; Reinauer RM
    Brain Behav Evol; 2001; 58(3):122-36. PubMed ID: 11910170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.
    Tian R; Losilla M; Lu Y; Yang G; Zakon H
    BMC Evol Biol; 2017 Feb; 17(1):51. PubMed ID: 28193153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Cytogenetics of the Black Ghost Knifefish (Gymnotiformes: Apteronotidae): Evidence of Chromosomal Fusion and Pericentric Inversions in Karyotypes of Two Apteronotus Species.
    Fernandes CA; Paiz LM; Baumgärtner L; Margarido VP; Vieira MMR
    Zebrafish; 2017 Oct; 14(5):471-476. PubMed ID: 28557696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrocommunication signals in female brown ghost electric knifefish, Apteronotus leptorhynchus.
    Tallarovic SK; Zakon HH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):649-57. PubMed ID: 12355241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function.
    Kolodziejski JA; Sanford SE; Smith GT
    J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deficit in object detection (electrolocation) following interruption of cerebellar function in the weakly electric fish, Apteronotus albifrons.
    Bombardieri RA; Feng AS
    Brain Res; 1977 Jul; 130(2):343-7. PubMed ID: 884528
    [No Abstract]   [Full Text] [Related]  

  • 30. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
    Kawasaki M; Leonard J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb; 203(2):151-162. PubMed ID: 28190119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electric imaging through evolution, a modeling study of commonalities and differences.
    Pedraja F; Aguilera P; Caputi AA; Budelli R
    PLoS Comput Biol; 2014 Jul; 10(7):e1003722. PubMed ID: 25010765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus.
    Fugère V; Krahe R
    J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of hypoxia on aerobic metabolism and active electrosensory acquisition in the African weakly electric fish Marcusenius victoriae.
    Moulton TL; Chapman LJ; Krahe R
    J Fish Biol; 2020 Feb; 96(2):496-505. PubMed ID: 31845335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish.
    Kolodziejski JA; Nelson BS; Smith GT
    J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.
    Smith AR; Proffitt MR; Ho WW; Mullaney CB; Maldonado-Ocampo JA; Lovejoy NR; Alves-Gomes JA; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):302-313. PubMed ID: 27769924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coding conspecific identity and motion in the electric sense.
    Yu N; Hupé G; Garfinkle C; Lewis JE; Longtin A
    PLoS Comput Biol; 2012; 8(7):e1002564. PubMed ID: 22807662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theme and variations: amphibious air-breathing intertidal fishes.
    Martin KL
    J Fish Biol; 2014 Mar; 84(3):577-602. PubMed ID: 24344914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serotonin modulates the electric waveform of the gymnotiform electric fish Brachyhypopomus pinnicaudatus.
    Stoddard PK; Markham MR; Salazar VL
    J Exp Biol; 2003 Apr; 206(Pt 8):1353-62. PubMed ID: 12624170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electric fish: new insights into conserved processes of adult tissue regeneration.
    Unguez GA
    J Exp Biol; 2013 Jul; 216(Pt 13):2478-86. PubMed ID: 23761473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.