These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33751213)
1. Assessing the learning curve associated with a novel flexible robot in the pre-clinical and clinical setting. Zhu TS; Godse N; Clayburgh DR; Duvvuri U Surg Endosc; 2022 Feb; 36(2):1563-1572. PubMed ID: 33751213 [TBL] [Abstract][Full Text] [Related]
2. A Novel Expert Coaching Model in Urology, Aimed at Accelerating the Learning Curve in Robotic Prostatectomy. Fainberg J; Vanden Berg RNW; Chesnut G; Coleman JA; Donahue T; Ehdaie B; Goh AC; Laudone VP; Lee T; Pyon J; Scardino PT; Smith RC J Surg Educ; 2022; 79(6):1480-1488. PubMed ID: 35872029 [TBL] [Abstract][Full Text] [Related]
3. Transoral Robotic Surgical Proficiency Via Real-Time Tactile Collision Awareness System. Mendelsohn AH; Kim C; Song J; Singh A; Le T; Abiri A; Berke GS; Geoghegan R Laryngoscope; 2020 Dec; 130 Suppl 6():S1-S17. PubMed ID: 32865822 [TBL] [Abstract][Full Text] [Related]
4. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Lang S; Mattheis S; Hasskamp P; Lawson G; Güldner C; Mandapathil M; Schuler P; Hoffmann T; Scheithauer M; Remacle M Laryngoscope; 2017 Feb; 127(2):391-395. PubMed ID: 27783427 [TBL] [Abstract][Full Text] [Related]
6. Transoral surgery using the Flex Robotic System: Initial experience in the United States. Persky MJ; Issa M; Bonfili JR; Goyal N; Goldenberg D; Duvvuri U Head Neck; 2018 Nov; 40(11):2482-2486. PubMed ID: 30303588 [TBL] [Abstract][Full Text] [Related]
7. Proficiency training on a virtual reality robotic surgical skills curriculum. Bric J; Connolly M; Kastenmeier A; Goldblatt M; Gould JC Surg Endosc; 2014 Dec; 28(12):3343-8. PubMed ID: 24946742 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of high-fidelity simulation as a training tool in transoral robotic surgery. Bur AM; Gomez ED; Newman JG; Weinstein GS; O'Malley BW; Rassekh CH; Kuchenbecker KJ Laryngoscope; 2017 Dec; 127(12):2790-2795. PubMed ID: 28657696 [TBL] [Abstract][Full Text] [Related]
9. 3D straight-stick laparoscopy versus 3D robotics for task performance in novice surgeons: a randomised crossover trial. Shakir F; Jan H; Kent A Surg Endosc; 2016 Dec; 30(12):5380-5387. PubMed ID: 27059971 [TBL] [Abstract][Full Text] [Related]
10. Objective assessment in residency-based training for transoral robotic surgery. Curry M; Malpani A; Li R; Tantillo T; Jog A; Blanco R; Ha PK; Califano J; Kumar R; Richmon J Laryngoscope; 2012 Oct; 122(10):2184-92. PubMed ID: 22915265 [TBL] [Abstract][Full Text] [Related]
11. Validation of a virtual reality-based robotic surgical skills curriculum. Connolly M; Seligman J; Kastenmeier A; Goldblatt M; Gould JC Surg Endosc; 2014 May; 28(5):1691-4. PubMed ID: 24380993 [TBL] [Abstract][Full Text] [Related]
12. Robotic Surgery Simulator: Elements to Build a Training Program. Tillou X; Collon S; Martin-Francois S; Doerfler A J Surg Educ; 2016; 73(5):870-8. PubMed ID: 27211879 [TBL] [Abstract][Full Text] [Related]
13. The Validation of a Novel Robot-Assisted Radical Prostatectomy Virtual Reality Module. Harrison P; Raison N; Abe T; Watkinson W; Dar F; Challacombe B; Van Der Poel H; Khan MS; Dasgupa P; Ahmed K J Surg Educ; 2018; 75(3):758-766. PubMed ID: 28974429 [TBL] [Abstract][Full Text] [Related]
14. Are new and young generations of surgeons more aware of transoral robotic surgery than older ones? An international survey. Lechien JR; Hans S J Robot Surg; 2023 Oct; 17(5):2065-2072. PubMed ID: 37204649 [TBL] [Abstract][Full Text] [Related]
15. Construction of a Urologic Robotic Surgery Training Curriculum: How Many Simulator Sessions Are Required for Residents to Achieve Proficiency? Wiener S; Haddock P; Shichman S; Dorin R J Endourol; 2015 Nov; 29(11):1289-93. PubMed ID: 26154108 [TBL] [Abstract][Full Text] [Related]
16. Flex Robotic System in transoral robotic surgery: The first 40 patients. Mattheis S; Hasskamp P; Holtmann L; Schäfer C; Geisthoff U; Dominas N; Lang S Head Neck; 2017 Mar; 39(3):471-475. PubMed ID: 27792258 [TBL] [Abstract][Full Text] [Related]
17. Preliminary experience in transoral laryngeal surgery with a flexible robotic system for benign lesions of the vocal folds. Remacle M; Prasad VMN Eur Arch Otorhinolaryngol; 2018 Mar; 275(3):761-765. PubMed ID: 29417276 [TBL] [Abstract][Full Text] [Related]
18. Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Remacle M; M N Prasad V; Lawson G; Plisson L; Bachy V; Van der Vorst S Eur Arch Otorhinolaryngol; 2015 Jun; 272(6):1451-5. PubMed ID: 25663191 [TBL] [Abstract][Full Text] [Related]
19. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model. Duran C; Estrada S; O'Malley M; Lumsden AB; Bismuth J J Vasc Surg; 2015 Feb; 61(2):535-41. PubMed ID: 25619579 [TBL] [Abstract][Full Text] [Related]
20. An objective approach to evaluate novice robotic surgeons using a combination of kinematics and stepwise cumulative sum (CUSUM) analyses. Lyman WB; Passeri MJ; Murphy K; Siddiqui IA; Khan AS; Iannitti DA; Martinie JB; Baker EH; Vrochides D Surg Endosc; 2021 Jun; 35(6):2765-2772. PubMed ID: 32556751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]