These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33751249)

  • 1. Droplet rolling angle model of micro-nanostructure superhydrophobic coating surface.
    Chen J; Chen J; Li L; Wang S; Xie Y
    Eur Phys J E Soft Matter; 2021 Mar; 44(2):25. PubMed ID: 33751249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.
    Dash S; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042402. PubMed ID: 24827255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces.
    He X; Cheng J; Patrick Collier C; Srijanto BR; Briggs DP
    J Colloid Interface Sci; 2020 Sep; 576():127-138. PubMed ID: 32408162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depinning force of a receding droplet on pillared superhydrophobic surfaces: Analytical models.
    Sarshar MA; Jiang Y; Xu W; Choi CH
    J Colloid Interface Sci; 2019 May; 543():122-129. PubMed ID: 30782518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
    Xu W; Leeladhar R; Kang YT; Choi CH
    Langmuir; 2013 May; 29(20):6032-41. PubMed ID: 23656600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.
    Dash S; Garimella SV
    Langmuir; 2013 Aug; 29(34):10785-95. PubMed ID: 23952149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobized metallic meshes can ease water droplet rolling.
    Abubakar AA; Yilbas BS; Al-Qahtani H; Mohammed AS
    Soft Matter; 2021 Aug; 17(31):7311-7321. PubMed ID: 34286802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination-Driven Controlled Assembly of Polyphenol-Metal Green Coating on Wood Micro-Grooved Surfaces: A Novel Approach to Stable Superhydrophobicity.
    Wang K; Wang Z; Dong Y; Zhang S; Li J
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow.
    Yeganehdoust F; Amer A; Sharifi N; Karimfazli I; Dolatabadi A
    Langmuir; 2021 May; 37(20):6278-6291. PubMed ID: 33978432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study.
    Li H; Yan T; Fichthorn KA; Yu S
    Langmuir; 2018 Aug; 34(34):9917-9926. PubMed ID: 30059231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Evaluation of Nano-TiO
    Li H; Lin X; Wang H
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33406746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water super-repellent behavior of semicircular micro/nanostructured surfaces.
    Tie L; Guo Z; Liang Y; Liu W
    Nanoscale; 2019 Feb; 11(8):3725-3732. PubMed ID: 30742167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discontinuous contact line motion of evaporating particle-laden droplet on superhydrophobic surfaces.
    Yamada Y; Horibe A
    Phys Rev E; 2018 Apr; 97(4-1):043113. PubMed ID: 29758695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.