BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33751426)

  • 1. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata.
    Fedorovych DV; Dmytruk KV; Sibirny AA
    Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of flavin mononucleotide by metabolically engineered yeast Candida famata.
    Yatsyshyn VY; Ishchuk OP; Voronovsky AY; Fedorovych DV; Sibirny AA
    Metab Eng; 2009 May; 11(3):163-7. PubMed ID: 19558965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production.
    Dmytruk KV; Yatsyshyn VY; Sybirna NO; Fedorovych DV; Sibirny AA
    Metab Eng; 2011 Jan; 13(1):82-8. PubMed ID: 21040798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering].
    Ishchuk OP; Iatsyshyn VIu; Dmytruk KV; Voronovs'kyĭ AIa; Fedorovych DV; Sybirnyĭ AA
    Ukr Biokhim Zh (1999); 2006; 78(5):63-9. PubMed ID: 17290783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of structural genes involved in riboflavin synthesis of the yeast Candida famata.
    Dmytruk KV; Abbas CA; Voronovsky AY; Kshanovska BV; Sybirna KA; Sybirny AA
    Ukr Biokhim Zh (1999); 2004; 76(1):78-87. PubMed ID: 15909421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis.
    Voronovsky AY; Abbas CA; Dmytruk KV; Ishchuk OP; Kshanovska BV; Sybirna KA; Gaillardin C; Sibirny AA
    Yeast; 2004 Nov; 21(15):1307-16. PubMed ID: 15543522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida famata (Candida flareri).
    Dmytruk KV; Sibirny AA
    Yeast; 2012 Nov; 29(11):453-8. PubMed ID: 23108915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers.
    Abbas CA; Sibirny AA
    Microbiol Mol Biol Rev; 2011 Jun; 75(2):321-60. PubMed ID: 21646432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli for the production of riboflavin.
    Lin Z; Xu Z; Li Y; Wang Z; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():104. PubMed ID: 25027702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments.
    Dmytruk KV; Voronovsky AY; Sibirny AA
    Curr Genet; 2006 Sep; 50(3):183-91. PubMed ID: 16770625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a transformation system for the flavinogenic yeast Candida famata.
    Voronovsky AA; Abbas CA; Fayura LR; Kshanovska BV; Dmytruk KV; Sybirna KA; Sibirny AA
    FEMS Yeast Res; 2002 Aug; 2(3):381-8. PubMed ID: 12702288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of injected flavins studied by using double-labeled [14C]flavin adenine dinucleotide and [14C, 32P]flavin mononucleotide.
    Okuda J; Nagamine J; Okumura M; Yagi K
    J Nutr Sci Vitaminol (Tokyo); 1978; 24(5):505-10. PubMed ID: 731334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of flavin cofactors in man: implications in health and disease.
    Barile M; Giancaspero TA; Brizio C; Panebianco C; Indiveri C; Galluccio M; Vergani L; Eberini I; Gianazza E
    Curr Pharm Des; 2013; 19(14):2649-75. PubMed ID: 23116402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of FAD synthetase gene from Corynebacterium ammoniagenes and its application to FAD and FMN production.
    Hagihara T; Fujio T; Aisaka K
    Appl Microbiol Biotechnol; 1995 Jan; 42(5):724-9. PubMed ID: 7765913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Variant of asporogenic yeast with atypical ratios of cellular flavin forms].
    Dikanskaia EM; Gorobtsova TA
    Mikrobiologiia; 1974; 43(5):879-83. PubMed ID: 4475356
    [No Abstract]   [Full Text] [Related]  

  • 17. Saccharomyces cerevisiae mitochondria can synthesise FMN and FAD from externally added riboflavin and export them to the extramitochondrial phase.
    Pallotta ML; Brizio C; Fratianni A; De Virgilio C; Barile M; Passarella S
    FEBS Lett; 1998 May; 428(3):245-9. PubMed ID: 9654142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aldosterone stimulation of riboflavin incorporation into rat renal flavin coenzymes and the effect of inhibition by riboflavin analogues on sodium reabsorption.
    Trachewsky D
    J Clin Invest; 1978 Dec; 62(6):1325-33. PubMed ID: 748381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation.
    Hustad S; McKinley MC; McNulty H; Schneede J; Strain JJ; Scott JM; Ueland PM
    Clin Chem; 2002 Sep; 48(9):1571-7. PubMed ID: 12194936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.