These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33751611)
1. Algal Community Change in Mountain Lakes of the Alps Reveals Effects of Climate Warming and Shifting Treelines Kuefner W; Hofmann AM; Geist J; Dubois N; Raeder U J Phycol; 2021 Aug; 57(4):1266-1283. PubMed ID: 33751611 [TBL] [Abstract][Full Text] [Related]
2. Interactive effects of climate-atmospheric cycling on aquatic communities and ecosystem shifts in mountain lakes of southeastern Tibetan Plateau. Wang Q; Wang R; Yang X; Anderson NJ; Kong L Sci Total Environ; 2024 Mar; 914():169825. PubMed ID: 38199353 [TBL] [Abstract][Full Text] [Related]
3. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399 [TBL] [Abstract][Full Text] [Related]
4. Bottom-up and top-down effects of browning and warming on shallow lake food webs. Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702 [TBL] [Abstract][Full Text] [Related]
5. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications. Lu X; Song S; Lu Y; Wang T; Liu Z; Li Q; Zhang M; Suriyanarayanan S; Jenkins A Environ Sci Process Impacts; 2017 Oct; 19(10):1300-1311. PubMed ID: 28858346 [TBL] [Abstract][Full Text] [Related]
6. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Kraemer BM; Mehner T; Adrian R Sci Rep; 2017 Sep; 7(1):10762. PubMed ID: 28883487 [TBL] [Abstract][Full Text] [Related]
7. The role of warm, dry summers and variation in snowpack on phytoplankton dynamics in mountain lakes. Oleksy IA; Beck WS; Lammers RW; Steger CE; Wilson C; Christianson K; Vincent K; Johnson G; Johnson PTJ; Baron JS Ecology; 2020 Oct; 101(10):e03132. PubMed ID: 32628277 [TBL] [Abstract][Full Text] [Related]
8. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes. Aguilera X; Lazzaro X; Coronel JS Photochem Photobiol Sci; 2013 Sep; 12(9):1649-57. PubMed ID: 23722356 [TBL] [Abstract][Full Text] [Related]
9. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Hu Z; Anderson NJ; Yang X; McGowan S Glob Chang Biol; 2014 May; 20(5):1614-28. PubMed ID: 24132882 [TBL] [Abstract][Full Text] [Related]
10. Impacts of climate warming and atmospheric deposition on recent shifts in chironomid communities in two alpine lakes, eastern China. Cao Y; Peng J; Zhou S; Chen X Environ Res; 2024 Apr; 246():118133. PubMed ID: 38191047 [TBL] [Abstract][Full Text] [Related]
11. Nutrients and warming interact to force mountain lakes into unprecedented ecological states. Oleksy IA; Baron JS; Leavitt PR; Spaulding SA Proc Biol Sci; 2020 Jul; 287(1930):20200304. PubMed ID: 32635862 [TBL] [Abstract][Full Text] [Related]
12. Sediment lipid biomarkers record phytoplankton dynamics of Lake Heihai (Yunnan Province, SW China) driven by climate warming since the 1980s. Zhang Y; Su Y; Liu Z; Yu J; Jin M Environ Sci Pollut Res Int; 2017 Sep; 24(26):21509-21516. PubMed ID: 28803343 [TBL] [Abstract][Full Text] [Related]
13. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size. Schulhof MA; Shurin JB; Declerck SAJ; Van de Waal DB Glob Chang Biol; 2019 Aug; 25(8):2751-2762. PubMed ID: 31004556 [TBL] [Abstract][Full Text] [Related]
14. Temperature and precipitation dominates millennium changes of eukaryotic algal communities in Lake Yamzhog Yumco, Southern Tibetan Plateau. Huo S; Zhang H; Wang J; Chen J; Wu F Sci Total Environ; 2022 Jul; 829():154636. PubMed ID: 35307443 [TBL] [Abstract][Full Text] [Related]
16. [Spatial distribution of cladoceran assemblages in surface sediments of shallow lakes in Yunnan.]. Zhu QS; Kong LY; Chen L; Wang X; Wang JY; Kang WG; Li R; Liang H; Chen GJ Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):3111-3119. PubMed ID: 30411589 [TBL] [Abstract][Full Text] [Related]
17. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Jiménez L; Rühland KM; Jeziorski A; Smol JP; Pérez-Martínez C Glob Chang Biol; 2018 Jan; 24(1):e139-e158. PubMed ID: 28833814 [TBL] [Abstract][Full Text] [Related]
18. Evaluating climate change impacts on mountain lakes by applying the new silicification value to paleolimnological samples. Kuefner W; Hofmann AM; Geist J; Raeder U Sci Total Environ; 2020 May; 715():136913. PubMed ID: 32007888 [TBL] [Abstract][Full Text] [Related]
19. Local forcings affect lake zooplankton vulnerability and response to climate warming. Alric B; Jenny JP; Berthon V; Arnaud F; Pignol C; Reyss JL; Sabatier P; Perga ME Ecology; 2013 Dec; 94(12):2767-80. PubMed ID: 24597223 [TBL] [Abstract][Full Text] [Related]
20. Tracking climate change in oligotrophic mountain lakes: Recent hydrology and productivity synergies in Lago de Sanabria (NW Iberian Peninsula). Jambrina-Enríquez M; Recio C; Vega JC; Valero-Garcés B Sci Total Environ; 2017 Jul; 590-591():579-591. PubMed ID: 28285853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]