These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33751812)

  • 1. Free-Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication.
    Cheng M; Guo C; Li W; Gross ML
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8867-8873. PubMed ID: 33751812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbocation Footprinting of Soluble and Transmembrane Proteins.
    Sun J; Li S; Li W; Gross ML
    Anal Chem; 2021 Oct; 93(39):13101-13105. PubMed ID: 34558889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diethylpyrocarbonate Footprints a Membrane Protein in Micelles.
    Guo C; Cheng M; Li W; Gross ML
    J Am Soc Mass Spectrom; 2021 Nov; 32(11):2636-2643. PubMed ID: 34664961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Organized Amphiphiles Are Poor Hydroxyl Radical Scavengers in Fast Photochemical Oxidation of Proteins Experiments.
    Cheng Z; Mobley C; Misra SK; Gadepalli RS; Hammond RI; Brown LS; Rimoldi JM; Sharp JS
    J Am Soc Mass Spectrom; 2021 May; 32(5):1155-1161. PubMed ID: 33881849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FPOP-LC-MS/MS Suggests Differences in Interaction Sites of Amphipols and Detergents with Outer Membrane Proteins.
    Watkinson TG; Calabrese AN; Ault JR; Radford SE; Ashcroft AE
    J Am Soc Mass Spectrom; 2017 Jan; 28(1):50-55. PubMed ID: 27343183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor Reagent Hydrophobicity Affects Membrane Protein Footprinting.
    Guo C; Cheng M; Li W; Gross ML
    J Am Soc Mass Spectrom; 2023 Dec; 34(12):2700-2710. PubMed ID: 37967285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Warfarin Inhibition Kinetics Requires Stabilization of Intramembrane Vitamin K Epoxide Reductases.
    Li S; Liu S; Yang Y; Li W
    J Mol Biol; 2020 Aug; 432(18):5197-5208. PubMed ID: 32445640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Spectrometry-Based Fast Photochemical Oxidation of Proteins (FPOP) for Higher Order Structure Characterization.
    Li KS; Shi L; Gross ML
    Acc Chem Res; 2018 Mar; 51(3):736-744. PubMed ID: 29450991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Protein Structure in Live Cells: Methodology for Studying Drug Interaction by Mass Spectrometry-Based Footprinting.
    Shen G; Li S; Cui W; Liu S; Yang Y; Gross M; Li W
    Biochemistry; 2018 Jan; 57(3):286-294. PubMed ID: 29192498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications generated by fast photochemical oxidation of proteins reflect the native conformations of proteins.
    Chea EE; Jones LM
    Protein Sci; 2018 Jun; 27(6):1047-1056. PubMed ID: 29575296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis.
    Liu XR; Rempel DL; Gross ML
    Nat Protoc; 2020 Dec; 15(12):3942-3970. PubMed ID: 33169002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fast Photochemical Oxidation of Proteins (FPOP) platform for free-radical reactions: the carbonate radical anion with peptides and proteins.
    Zhang MM; Rempel DL; Gross ML
    Free Radic Biol Med; 2019 Feb; 131():126-132. PubMed ID: 30502457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.
    Cao Z; van Lith M; Mitchell LJ; Pringle MA; Inaba K; Bulleid NJ
    Biochem J; 2016 Apr; 473(7):851-8. PubMed ID: 26772871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins.
    Gau BC; Chen H; Zhang Y; Gross ML
    Anal Chem; 2010 Sep; 82(18):7821-7. PubMed ID: 20738105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases.
    Shen G; Li C; Cao Q; Megta AK; Li S; Gao M; Liu H; Shen Y; Chen Y; Yu H; Li S; Li W
    FEBS J; 2022 Aug; 289(15):4564-4579. PubMed ID: 35113495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast photochemical oxidation of protein footprints faster than protein unfolding.
    Gau BC; Sharp JS; Rempel DL; Gross ML
    Anal Chem; 2009 Aug; 81(16):6563-71. PubMed ID: 20337372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation.
    Ke N; Landeta C; Wang X; Boyd D; Eser M; Beckwith J
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards high-throughput fast photochemical oxidation of proteins: Quantifying exposure in high fluence microtiter plate photolysis.
    Riaz M; Misra SK; Sharp JS
    Anal Biochem; 2018 Nov; 561-562():32-36. PubMed ID: 30240591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Nanosecond Laser Photolysis Protein Footprinting to Study EGFR Activation by EGF in Cells.
    Zhu Y; Serra A; Guo T; Park JE; Zhong Q; Sze SK
    J Proteome Res; 2017 Jun; 16(6):2282-2293. PubMed ID: 28452222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.