These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 33751841)
1. Carbon Quantum Dots Promote Coupled Valence Engineering of V Zhang J; Wei S; Wang H; Liu H; Zhang Y; Liu S; Wang Z; Lu X ChemSusChem; 2021 May; 14(9):2076-2083. PubMed ID: 33751841 [TBL] [Abstract][Full Text] [Related]
2. Interfacial Engineering Coupled Valence Tuning of MoO Liu Y; Wang J; Zeng Y; Liu J; Liu X; Lu X Small; 2020 Mar; 16(11):e1907458. PubMed ID: 32068969 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries. Xu G; Zhang Y; Gong Z; Lu T; Pan L J Colloid Interface Sci; 2021 Jul; 593():417-423. PubMed ID: 33744550 [TBL] [Abstract][Full Text] [Related]
4. Tuning the Kinetics of Zinc-Ion Insertion/Extraction in V Liu S; Zhu H; Zhang B; Li G; Zhu H; Ren Y; Geng H; Yang Y; Liu Q; Li CC Adv Mater; 2020 Jul; 32(26):e2001113. PubMed ID: 32431024 [TBL] [Abstract][Full Text] [Related]
5. Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries. Liu X; Ma L; Du Y; Lu Q; Yang A; Wang X Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924150 [TBL] [Abstract][Full Text] [Related]
6. Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges, and Strategies. Zhu K; Yang W Acc Chem Res; 2024 Oct; 57(19):2887-2900. PubMed ID: 39279672 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and electrochemical performance of NaV Hu F; Xie D; Cui F; Zhang D; Song G RSC Adv; 2019 Jul; 9(36):20549-20556. PubMed ID: 35515541 [TBL] [Abstract][Full Text] [Related]
8. Electrochemically Induced Metal-Organic-Framework-Derived Amorphous V Deng S; Yuan Z; Tie Z; Wang C; Song L; Niu Z Angew Chem Int Ed Engl; 2020 Dec; 59(49):22002-22006. PubMed ID: 32841453 [TBL] [Abstract][Full Text] [Related]
9. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. Li C; Li M; Xu H; Zhao F; Gong S; Wang H; Qi J; Wang Z; Fan X; Peng W; Liu J J Colloid Interface Sci; 2022 Oct; 623():277-284. PubMed ID: 35597011 [TBL] [Abstract][Full Text] [Related]
10. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Xia C; Guo J; Li P; Zhang X; Alshareef HN Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667 [TBL] [Abstract][Full Text] [Related]
11. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries. Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805 [TBL] [Abstract][Full Text] [Related]
12. Rapid Electrochemical Activation of V Zheng J; Zhan C; Zhang K; Fu W; Nie Q; Zhang M; Shen Z ChemSusChem; 2022 Apr; 15(8):e202200075. PubMed ID: 35218322 [TBL] [Abstract][Full Text] [Related]
13. High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering. Deng L; Sun K; Liu J; Li Z; Cao J; Liao S Molecules; 2024 Jul; 29(13):. PubMed ID: 38999098 [TBL] [Abstract][Full Text] [Related]
14. Hierarchical Porous Metallic V Ding Y; Peng Y; Chen S; Zhang X; Li Z; Zhu L; Mo LE; Hu L ACS Appl Mater Interfaces; 2019 Nov; 11(47):44109-44117. PubMed ID: 31687795 [TBL] [Abstract][Full Text] [Related]
15. Regulating the Interlayer Spacing of Vanadium Oxide by In Situ Polyaniline Intercalation Enables an Improved Aqueous Zinc-Ion Storage Performance. Yin C; Pan C; Liao X; Pan Y; Yuan L ACS Appl Mater Interfaces; 2021 Aug; 13(33):39347-39354. PubMed ID: 34383482 [TBL] [Abstract][Full Text] [Related]
16. A Long-Cycling Aqueous Zinc-Ion Pouch Cell: NASICON-Type Material and Surface Modification. Zhang X; Chen H; Liu W; Xiao N; Zhang Q; Rui X; Huang S Chem Asian J; 2020 May; 15(9):1430-1435. PubMed ID: 32167677 [TBL] [Abstract][Full Text] [Related]
17. Carbon Nitride Pillared Vanadate Via Chemical Pre-Intercalation Towards High-Performance Aqueous Zinc-Ion Batteries. Xu Y; Fan G; Sun PX; Guo Y; Wang Y; Gu X; Wu L; Yu L Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303529. PubMed ID: 37132610 [TBL] [Abstract][Full Text] [Related]
18. Two Birds with One Stone: Boosting Zinc-Ion Insertion/Extraction Kinetics and Suppressing Vanadium Dissolution of V Zhang D; Cao J; Yue Y; Pakornchote T; Bovornratanaraks T; Han J; Zhang X; Qin J; Huang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38416-38424. PubMed ID: 34342444 [TBL] [Abstract][Full Text] [Related]
19. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581 [TBL] [Abstract][Full Text] [Related]
20. Toward a High-Performance Aqueous Zinc Ion Battery: Potassium Vanadate Nanobelts and Carbon Enhanced Zinc Foil. Qiu N; Yang Z; Xue R; Wang Y; Zhu Y; Liu W Nano Lett; 2021 Apr; 21(7):2738-2744. PubMed ID: 33783214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]