BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33751972)

  • 1. An evolved native microalgal consortium-snow system for the bioremediation of biogas and centrate wastewater: Start-up, optimization and stabilization.
    Qiu S; Yu Z; Hu Y; Chen Z; Guo J; Xia W; Ge S
    Water Res; 2021 May; 196():117038. PubMed ID: 33751972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater.
    Arias DM; Solé-Bundó M; Garfí M; Ferrer I; García J; Uggetti E
    Bioresour Technol; 2018 Jan; 247():513-519. PubMed ID: 28972904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation.
    de Mendonça HV; Ometto JPHB; Otenio MH; Marques IPR; Dos Reis AJD
    Sci Total Environ; 2018 Aug; 633():1-11. PubMed ID: 29571041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced nutrient removal and bioenergy production in microalgal photobioreactor following anaerobic membrane bioreactor for decarbonized wastewater treatment.
    Ding M; Wang C; Woo Bae S; Yong Ng H
    Bioresour Technol; 2022 Nov; 364():128120. PubMed ID: 36244603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time.
    Solé-Bundó M; Salvadó H; Passos F; Garfí M; Ferrer I
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30134563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cattle wastewater as a low-cost supplement augmenting microalgal biomass under batch and fed-batch conditions.
    Jain R; Mishra S; Mohanty K
    J Environ Manage; 2022 Feb; 304():114213. PubMed ID: 34896802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of microalgal biomass on supernatant from biosolid dewatering.
    Ficara E; Uslenghi A; Basilico D; Mezzanotte V
    Water Sci Technol; 2014; 69(4):896-902. PubMed ID: 24569293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of three microalgal-based cultivation technologies on different domestic wastewater and biogas purification in photobioreactor.
    Sun S; Hu C; Gao S; Zhao Y; Xu J
    Water Environ Res; 2019 Aug; 91(8):679-688. PubMed ID: 30844098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings.
    Ge S; Champagne P
    Water Res; 2016 Jan; 88():604-612. PubMed ID: 26562797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trade-offs between effluent quality and ammonia volatilisation with CO
    Sutherland DL; Burke J; Ralph PJ
    J Environ Manage; 2021 Jan; 277():111398. PubMed ID: 33039702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp.
    Yan C; Zheng Z
    Bioresour Technol; 2013 Jul; 139():292-9. PubMed ID: 23665690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading.
    Nagarajan D; Lee DJ; Chang JS
    Bioresour Technol; 2019 Oct; 290():121804. PubMed ID: 31327690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp.
    Prandini JM; da Silva ML; Mezzari MP; Pirolli M; Michelon W; Soares HM
    Bioresour Technol; 2016 Feb; 202():67-75. PubMed ID: 26700760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents.
    Bahr M; Díaz I; Dominguez A; González Sánchez A; Muñoz R
    Environ Sci Technol; 2014; 48(1):573-81. PubMed ID: 24298934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hydraulic retention time on indigenous microalgae and activated sludge process.
    Anbalagan A; Schwede S; Lindberg CF; Nehrenheim E
    Water Res; 2016 Mar; 91():277-84. PubMed ID: 26803263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling industrial wastewater for improved carbohydrate-rich biomass production in a semi-continuous photobioreactor: Effect of hydraulic retention time.
    Sánchez-Contreras MI; Morales-Arrieta S; Okoye PU; Guillén-Garcés RA; Sebastian PJ; Arias DM
    J Environ Manage; 2021 Apr; 284():112065. PubMed ID: 33561761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced microalgae cultivation using wastewater nutrients extracted by a microbial electrochemical system.
    Wang Z; Hartline CJ; Zhang F; He Z
    Water Res; 2021 Nov; 206():117722. PubMed ID: 34637970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester.
    Moungmoon T; Chaichana C; Pumas C; Pathom-Aree W; Ruangrit K; Pekkoh J
    Sci Total Environ; 2020 Apr; 714():136577. PubMed ID: 31982736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.