BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 33752053)

  • 1. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances.
    Waheed A; Baig N; Ullah N; Falath W
    J Environ Manage; 2021 Jun; 287():112360. PubMed ID: 33752053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorptive and photocatalytic degradation potential of porous polymeric materials for removal of pesticides, pharmaceuticals, and dyes-based emerging contaminants from water.
    Intisar A; Ramzan A; Hafeez S; Hussain N; Irfan M; Shakeel N; Gill KA; Iqbal A; Janczarek M; Jesionowski T
    Chemosphere; 2023 Sep; 336():139203. PubMed ID: 37315851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives.
    Lan D; Zhu H; Zhang J; Li S; Chen Q; Wang C; Wu T; Xu M
    Chemosphere; 2022 Apr; 293():133464. PubMed ID: 34974043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in conducting polymer-based magnetic nanosorbents for dyes and heavy metal removal: fabrication, applications, and perspective.
    Goswami MK; Srivastava A; Dohare RK; Tiwari AK; Srivastav A
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73031-73060. PubMed ID: 37195615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric hydrogels-based materials for wastewater treatment.
    Ahmaruzzaman M; Roy P; Bonilla-Petriciolet A; Badawi M; Ganachari SV; Shetti NP; Aminabhavi TM
    Chemosphere; 2023 Aug; 331():138743. PubMed ID: 37105310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater.
    Rasheed T; Hassan AA; Bilal M; Hussain T; Rizwan K
    Chemosphere; 2020 Nov; 259():127369. PubMed ID: 32593814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch-based hydrogels for environmental applications: A review.
    Dong Y; Ghasemzadeh M; Khorsandi Z; Sheibani R; Nasrollahzadeh M
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131956. PubMed ID: 38692526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon.
    Zhu S; Xu J; Wang B; Xie J; Ying G; Li J; Cheng Z; Li J; Chen K
    J Colloid Interface Sci; 2022 Nov; 625():158-168. PubMed ID: 35716611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in lignin-based porous materials for pollutants removal from wastewater.
    Liu Y; Jin C; Yang Z; Wu G; Liu G; Kong Z
    Int J Biol Macromol; 2021 Sep; 187():880-891. PubMed ID: 34329666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous organic polymers (POPs) for environmental remediation.
    Fajal S; Dutta S; Ghosh SK
    Mater Horiz; 2023 Oct; 10(10):4083-4138. PubMed ID: 37575072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of multi-functional porous microspheres in a modular fashion for the detection, adsorption, and removal of pollutants in wastewater.
    Ding B; Wang J; Tao S; Ding Y; Zhang L; Gao N; Li G; Shi H; Li W; Ge S
    J Colloid Interface Sci; 2018 Jul; 522():1-9. PubMed ID: 29573635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel benzylphosphate-based covalent porous organic polymers for the effective capture of rare earth elements from aqueous solutions.
    Ravi S; Kim SY; Bae YS
    J Hazard Mater; 2022 Feb; 424(Pt A):127356. PubMed ID: 34601406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review.
    Sheth Y; Dharaskar S; Chaudhary V; Khalid M; Walvekar R
    Chemosphere; 2022 Apr; 293():133563. PubMed ID: 35007610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater.
    Barasarathi J; Abdullah PS; Uche EC
    Chemosphere; 2022 Oct; 305():135384. PubMed ID: 35724716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in magnetic composites as adsorbents for wastewater remediation.
    Sharma A; Mangla D; Shehnaz ; Chaudhry SA
    J Environ Manage; 2022 Mar; 306():114483. PubMed ID: 35066323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials photocatalytic activities for waste water treatment: a review.
    Singh P; Mohan B; Madaan V; Ranga R; Kumari P; Kumar S; Bhankar V; Kumar P; Kumar K
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69294-69326. PubMed ID: 35978242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater.
    Ramalingam G; Perumal N; Priya AK; Rajendran S
    Chemosphere; 2022 Aug; 300():134391. PubMed ID: 35367486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism.
    Ru J; Wang X; Wang F; Cui X; Du X; Lu X
    Ecotoxicol Environ Saf; 2021 Jan; 208():111577. PubMed ID: 33160184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives.
    Saravanan A; Kumar PS; Hemavathy RV; Jeevanantham S; Jawahar MJ; Neshaanthini JP; Saravanan R
    Chemosphere; 2022 Nov; 307(Pt 1):135713. PubMed ID: 35843436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored fabrication of biodegradable polymer/ Fe
    Jayachitra R; Lincy V; Prasannan A; Nimita Jebaranjitham J; Sangaraju S; Hong PD
    Environ Res; 2024 May; 248():118262. PubMed ID: 38280523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.