BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33752122)

  • 1. Investigation of the prevalence and catalytic activity of rubredoxin-fused alkane monooxygenases (AlkBs).
    Williams SC; Forsberg AP; Lee J; Vizcarra CL; Lopatkin AJ; Austin RN
    J Inorg Biochem; 2021 Jun; 219():111409. PubMed ID: 33752122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.
    Nie Y; Liang J; Fang H; Tang YQ; Wu XL
    Appl Environ Microbiol; 2011 Oct; 77(20):7279-88. PubMed ID: 21873474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alkane monooxygenase (AlkB) family in which all electron transfer partners are covalently bound to the oxygen-activating hydroxylase.
    Williams SC; Luongo D; Orman M; Vizcarra CL; Austin RN
    J Inorg Biochem; 2022 Mar; 228():111707. PubMed ID: 34990970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview of the Electron-Transfer Proteins That Activate Alkane Monooxygenase (AlkB).
    Williams SC; Austin RN
    Front Microbiol; 2022; 13():845551. PubMed ID: 35295299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1.
    Tani A; Ishige T; Sakai Y; Kato N
    J Bacteriol; 2001 Mar; 183(5):1819-23. PubMed ID: 11160120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of long-chain n-alkane degradation by Dietzia spp.
    Bihari Z; Szvetnik A; Szabó Z; Blastyák A; Zombori Z; Balázs M; Kiss I
    FEMS Microbiol Lett; 2011 Mar; 316(2):100-7. PubMed ID: 21204932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes.
    Lo Piccolo L; De Pasquale C; Fodale R; Puglia AM; Quatrini P
    Appl Environ Microbiol; 2011 Feb; 77(4):1204-13. PubMed ID: 21183636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa.
    Marín MM; Yuste L; Rojo F
    J Bacteriol; 2003 May; 185(10):3232-7. PubMed ID: 12730186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Hydroxylation of C
    Tsai YF; Luo WI; Chang JL; Chang CW; Chuang HC; Ramu R; Wei GT; Zen JM; Yu SS
    Sci Rep; 2017 Aug; 7(1):8369. PubMed ID: 28827709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment.
    Xu M; Xiao X; Wang F
    Extremophiles; 2008 Mar; 12(2):255-62. PubMed ID: 18087672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of the alkane-oxidizing enzyme AlkB.
    Guo X; Zhang J; Han L; Lee J; Williams SC; Forsberg A; Xu Y; Austin RN; Feng L
    Nat Commun; 2023 Apr; 14(1):2180. PubMed ID: 37069165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.
    Nieboer M; Kingma J; Witholt B
    Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1.
    Haspel G; Ehrt S; Hillen W
    Microbiology (Reading); 1995 Jun; 141 ( Pt 6)():1425-1432. PubMed ID: 7670642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.
    Smits TH; Balada SB; Witholt B; van Beilen JB
    J Bacteriol; 2002 Mar; 184(6):1733-42. PubMed ID: 11872725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes.
    Cappelletti M; Fedi S; Frascari D; Ohtake H; Turner RJ; Zannoni D
    Appl Environ Microbiol; 2011 Mar; 77(5):1619-27. PubMed ID: 21193665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium.
    Liang JL; Nie Y; Wang M; Xiong G; Wang YP; Maser E; Wu XL
    Mol Microbiol; 2016 Jan; 99(2):338-59. PubMed ID: 26418273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of three propane-inducible oxygenases in Mycobacterium sp. strain ENV421.
    Masuda H; McClay K; Steffan RJ; Zylstra GJ
    Lett Appl Microbiol; 2012 Sep; 55(3):175-81. PubMed ID: 22803623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation.
    Funhoff EG; Bauer U; García-Rubio I; Witholt B; van Beilen JB
    J Bacteriol; 2006 Jul; 188(14):5220-7. PubMed ID: 16816194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6.
    Fujii T; Narikawa T; Takeda K; Kato J
    Biosci Biotechnol Biochem; 2004 Oct; 68(10):2171-7. PubMed ID: 15502364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa.
    Smits TH; Witholt B; van Beilen JB
    Antonie Van Leeuwenhoek; 2003; 84(3):193-200. PubMed ID: 14574114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.