These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33752132)

  • 1. Optical motion capture accuracy is task-dependent in assessing wrist motion.
    McHugh B; Akhbari B; Morton AM; Moore DC; Crisco JJ
    J Biomech; 2021 May; 120():110362. PubMed ID: 33752132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of biplane videoradiography for quantifying dynamic wrist kinematics.
    Akhbari B; Morton AM; Moore DC; Weiss AC; Wolfe SW; Crisco JJ
    J Biomech; 2019 Jul; 92():120-125. PubMed ID: 31174845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carpal and forearm kinematics during a simulated hammering task.
    Leventhal EL; Moore DC; Akelman E; Wolfe SW; Crisco JJ
    J Hand Surg Am; 2010 Jul; 35(7):1097-104. PubMed ID: 20610055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the Leap Motion Controller using markered motion capture technology.
    Smeragliuolo AH; Hill NJ; Disla L; Putrino D
    J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker placement to describe the wrist movements during activities of daily living in cyclical tasks.
    Murgia A; Kyberd PJ; Chappell PH; Light CM
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):248-54. PubMed ID: 15003339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biplanar Videoradiography to Study the Wrist and Distal Radioulnar Joints.
    Akhbari B; Morton AM; Moore DC; Crisco JJ
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ulnar Extension Coupling in Functional Wrist Kinematics During Hand Activities of Daily Living.
    Nadeem M; Loss JG; Li ZM; Seitz WH
    J Hand Surg Am; 2022 Feb; 47(2):187.e1-187.e13. PubMed ID: 34049729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of an electrogoniometer relative to optical motion tracking for quantifying wrist range of motion.
    McHugh BP; Morton AM; Akhbari B; Molino J; Crisco JJ
    J Med Eng Technol; 2020 Feb; 44(2):49-54. PubMed ID: 31997679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics.
    Kessler SE; Rainbow MJ; Lichtwark GA; Cresswell AG; D'Andrea SE; Konow N; Kelly LA
    Front Bioeng Biotechnol; 2019; 7():199. PubMed ID: 31508415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal kinematics of carpal bones: a three-dimensional analysis of carpal bone motion relative to the radius.
    Kobayashi M; Berger RA; Nagy L; Linscheid RL; Uchiyama S; Ritt M; An KN
    J Biomech; 1997 Aug; 30(8):787-93. PubMed ID: 9239563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo three-dimensional carpal bone kinematics during flexion-extension and radio-ulnar deviation of the wrist: Dynamic motion versus step-wise static wrist positions.
    Foumani M; Strackee SD; Jonges R; Blankevoort L; Zwinderman AH; Carelsen B; Streekstra GJ
    J Biomech; 2009 Dec; 42(16):2664-71. PubMed ID: 19748626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Volarly Angulated Distal Radius Fractures on Forearm Rotation and Distal Radioulnar Joint Kinematics.
    Nishiwaki M; Welsh MF; Gammon B; Ferreira LM; Johnson JA; King GJ
    J Hand Surg Am; 2015 Nov; 40(11):2236-42. PubMed ID: 26409579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of lunate morphology on the 3-dimensional kinematics of the carpus.
    Bain GI; Clitherow HD; Millar S; Fraysse F; Costi JJ; Eng K; McGuire DT; Thewlis D
    J Hand Surg Am; 2015 Jan; 40(1):81-9.e1. PubMed ID: 25447001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Three-dimensional finite element model construction and biomechanical analysis of customized titanium alloy lunate prosthesis].
    Wang B; Cai X; Zhang Y; Zhang B; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Jul; 37(7):821-826. PubMed ID: 37460178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an objective device for assessing circumductive wrist motion.
    Franko OI; Lal S; Pauyo T; Alexander M; Zurakowski D; Day C
    J Hand Surg Am; 2008 Oct; 33(8):1293-300. PubMed ID: 18929191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of tracking marker locations on three-dimensional wrist kinematics.
    Turner J; Forrester SE; Mears AC; Roberts JR
    J Sci Med Sport; 2020 Oct; 23(10):985-990. PubMed ID: 32284293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional ranges of motion of the wrist joint.
    Ryu JY; Cooney WP; Askew LJ; An KN; Chao EY
    J Hand Surg Am; 1991 May; 16(3):409-19. PubMed ID: 1861019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional in vivo kinematics of the distal radioulnar joint in malunited distal radius fractures.
    Moore DC; Hogan KA; Crisco JJ; Akelman E; Dasilva MF; Weiss AP
    J Hand Surg Am; 2002 Mar; 27(2):233-42. PubMed ID: 11901382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of a Low-Cost 3D-Printed Wearable Goniometer for Measuring Wrist Motion.
    Young C; DeDecker S; Anderson D; Oliver ML; Gordon KD
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.