These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 33752137)

  • 1. Reaching for known unknowns: Rapid reach decisions accurately reflect the future state of dynamic probabilistic information.
    Wispinski NJ; Stone SA; Bertrand JK; Ouellette Zuk AA; Lavoie EB; Gallivan JP; Chapman CS
    Cortex; 2021 May; 138():253-265. PubMed ID: 33752137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.
    Strauss S; Woodgate PJ; Sami SA; Heinke D
    Neural Netw; 2015 Dec; 72():3-12. PubMed ID: 26667353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (De)synchronization of advanced visual information and ball flight characteristics constrains emergent information-movement couplings during one-handed catching.
    Stone JA; Maynard IW; North JS; Panchuk D; Davids K
    Exp Brain Res; 2015 Feb; 233(2):449-58. PubMed ID: 25362517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balls to the wall: how acoustic information from a ball in motion guides interceptive movement in people with Parkinson's disease.
    Bieńkiewicz MM; Young WR; Craig CM
    Neuroscience; 2014 Sep; 275():508-18. PubMed ID: 24995419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of rapid adjustment of brief interceptive action using predicted information.
    Ikudome S; Nakamoto H; Yotani K; Unenaka S; Mori S
    Brain Cogn; 2015 Jul; 97():51-8. PubMed ID: 26010202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How position, velocity, and temporal information combine in the prospective control of catching: data and model.
    Dessing JC; Peper CL; Bullock D; Beek PJ
    J Cogn Neurosci; 2005 Apr; 17(4):668-86. PubMed ID: 15829086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and spatial occlusion of advanced visual information constrains movement (re)organization in one-handed catching behaviors.
    Stone JA; Maynard IW; North JS; Panchuk D; Davids K
    Acta Psychol (Amst); 2017 Mar; 174():80-88. PubMed ID: 28196753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaching for the unknown: multiple target encoding and real-time decision-making in a rapid reach task.
    Chapman CS; Gallivan JP; Wood DK; Milne JL; Culham JC; Goodale MA
    Cognition; 2010 Aug; 116(2):168-76. PubMed ID: 20471007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allocation of Visuospatial Attention Indexes Evidence Accumulation for Reach Decisions.
    Schonard C; Heed T; Seegelke C
    eNeuro; 2022; 9(6):. PubMed ID: 36302633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-line processing of uncertain information in visuomotor control.
    Izawa J; Shadmehr R
    J Neurosci; 2008 Oct; 28(44):11360-8. PubMed ID: 18971478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting online control in Developmental Coordination Disorder: a kinematic analysis of double-step reaching.
    Hyde C; Wilson PH
    Brain Cogn; 2011 Apr; 75(3):232-41. PubMed ID: 21256656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cue informativeness constrains visual tracking during an interceptive timing task.
    Akl J; Panchuk D
    Atten Percept Psychophys; 2016 May; 78(4):1115-24. PubMed ID: 26975450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humans trade off viewing time and movement duration to improve visuomotor accuracy in a fast reaching task.
    Battaglia PW; Schrater PR
    J Neurosci; 2007 Jun; 27(26):6984-94. PubMed ID: 17596447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuously updating one's predictions underlies successful interception.
    Brenner E; Smeets JBJ
    J Neurophysiol; 2018 Dec; 120(6):3257-3274. PubMed ID: 30379633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated ball projection technology for the study of dynamic interceptive actions.
    Stone JA; Panchuk D; Davids K; North JS; Fairweather I; Maynard IW
    Behav Res Methods; 2014 Dec; 46(4):984-91. PubMed ID: 24356994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment.
    Limanowski J; Kirilina E; Blankenburg F
    Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid target foraging with reach or gaze: The hand looks further ahead than the eye.
    Diamond JS; Wolpert DM; Flanagan JR
    PLoS Comput Biol; 2017 Jul; 13(7):e1005504. PubMed ID: 28683138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ball-swing on the timing and coordination of a natural interceptive task.
    Sarpeshkar V; Mann DL; Spratford W; Abernethy B
    Hum Mov Sci; 2017 Aug; 54():82-100. PubMed ID: 28410536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.