These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33752374)

  • 1. On the Gibbs-Thomson equation for the crystallization of confined fluids.
    Scalfi L; Coasne B; Rotenberg B
    J Chem Phys; 2021 Mar; 154(11):114711. PubMed ID: 33752374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and Analyzing Freezing-Point Transitions of Confined Fluids within Nanopores.
    Shimizu S; Agrawal KV; O'Mahony M; Drahushuk LW; Manohar N; Myerson AS; Strano MS
    Langmuir; 2015 Sep; 31(37):10113-8. PubMed ID: 26332689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of freezing of simple fluids confined within carbon nanotubes.
    Hung FR; Coasne B; Santiso EE; Gubbins KE; Siperstein FR; Sliwinska-Bartkowiak M
    J Chem Phys; 2005 Apr; 122(14):144706. PubMed ID: 15847552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting transition of Lennard-Jones fluid in cylindrical pores.
    Das CK; Singh JK
    J Chem Phys; 2014 May; 140(20):204703. PubMed ID: 24880307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system.
    Hansen N; Jakobtorweihen S; Keil FJ
    J Chem Phys; 2005 Apr; 122(16):164705. PubMed ID: 15945697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Phys Chem B; 2009 Oct; 113(42):13874-81. PubMed ID: 19627116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of confinement on the solid-liquid coexistence of Lennard-Jones fluid.
    Das CK; Singh JK
    J Chem Phys; 2013 Nov; 139(17):174706. PubMed ID: 24206321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate.
    Jin D; Coasne B
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy and the Tolman Parameter in Nucleation Theory.
    Schmelzer JWP; Abyzov AS; Baidakov VG
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pore geometry on the compressibility of a confined simple fluid.
    Dobrzanski CD; Maximov MA; Gor GY
    J Chem Phys; 2018 Feb; 148(5):054503. PubMed ID: 29421901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation and short time dynamics of bulk liquids and fluids confined in spherical cavities and slit pores.
    Krishnan SH; Ayappa KG
    J Phys Chem B; 2005 Dec; 109(49):23237-49. PubMed ID: 16375288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connect the Thermodynamics of Bulk and Confined Fluids: Confinement-Adsorption Scaling.
    Qiao CZ; Zhao SL; Liu HL; Dong W
    Langmuir; 2019 Mar; 35(10):3840-3847. PubMed ID: 30691262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures.
    Erdős M; Galteland O; Bedeaux D; Kjelstrup S; Moultos OA; Vlugt TJH
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscopic confinement through self-assembly: crystallization within micellar cores exhibits simple Gibbs-Thomson behavior.
    Zinn T; Willner L; Lund R
    Phys Rev Lett; 2014 Dec; 113(23):238305. PubMed ID: 25526170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing of mixtures confined in silica nanopores: experiment and molecular simulation.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Chem Phys; 2010 Aug; 133(8):084701. PubMed ID: 20815584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface texture on freezing in nanopores: surface-induced versus homogeneous crystallization.
    Coasne B
    Langmuir; 2015 Mar; 31(9):2706-13. PubMed ID: 25685867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations.
    Ghoufi A; Morineau D; Lefort R; Hureau I; Hennous L; Zhu H; Szymczyk A; Malfreyt P; Maurin G
    J Chem Phys; 2011 Feb; 134(7):074104. PubMed ID: 21341825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of interfaces extended to nanoscales by introducing integral and differential surface tensions.
    Dong W
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33452136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.