These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3375239)

  • 1. Nucleoside adducts are formed by cooperative reaction of acetaldehyde and alcohols: possible mechanism for the role of ethanol in carcinogenesis.
    Fraenkel-Conrat H; Singer B
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):3758-61. PubMed ID: 3375239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan analogues form adducts by cooperative reaction with aldehydes and alcohols or with aldehydes alone: possible role in ethanol toxicity.
    Austin JE; Fraenkel-Conrat H
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8439-42. PubMed ID: 1528848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further studies of the mixed acetals of nucleosides.
    Austin J; Dosanjh MK; Fraenkel-Conrat H
    Biochimie; 1993; 75(7):511-5. PubMed ID: 8268251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of the reaction of acetaldehyde with deoxynucleosides.
    Vaca CE; Fang JL; Schweda EK
    Chem Biol Interact; 1995 Oct; 98(1):51-67. PubMed ID: 7586051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sites of reaction of glutaraldehyde and acetaldehyde with nucleosides.
    Hemminki K; Suni R
    Arch Toxicol; 1984 Sep; 55(3):186-90. PubMed ID: 6437377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoside and deoxynucleoside phosphorylation in formamide solutions.
    Schoffstall AM; Barto RJ; Ramos DL
    Orig Life; 1982 Jun; 12(2):143-51. PubMed ID: 7145377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.
    Balbo S; Brooks PJ
    Adv Exp Med Biol; 2015; 815():71-88. PubMed ID: 25427902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links.
    Cheng G; Shi Y; Sturla SJ; Jalas JR; McIntee EJ; Villalta PW; Wang M; Hecht SS
    Chem Res Toxicol; 2003 Feb; 16(2):145-52. PubMed ID: 12588185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of haloketenes and halothioketenes with nucleobases: chemical characterization of reaction products.
    Müller M; Birner G; Dekant W
    Chem Res Toxicol; 1998 May; 11(5):454-63. PubMed ID: 9585476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a fluorescent adduct in the reaction of 2'-deoxyadenosine with a malonaldehyde-acetaldehyde condensation product.
    Le Curieux F; Pluskota D; Munter T; Sjöholm R; Kronberg L
    Chem Res Toxicol; 1998 Sep; 11(9):989-94. PubMed ID: 9760272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of conjugate adducts formed in the reactions of malonaldehyde-acetaldehyde and malonaldehyde-formaldehyde with cytidine.
    Pluskota-Karwatka D; Le Curieux F; Munter T; Sjöholm R; Kronberg L
    Chem Res Toxicol; 2002 Feb; 15(2):110-7. PubMed ID: 11849036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of bisphenol A 3,4-quinone metabolite with glutathione and ribonucleosides/deoxyribonucleosides in vitro.
    Wu Q; Fang J; Li S; Wei J; Yang Z; Zhao H; Zhao C; Cai Z
    J Hazard Mater; 2017 Feb; 323(Pt A):195-202. PubMed ID: 26971050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alcohol, Aldehydes, Adducts and Airways.
    Sapkota M; Wyatt TA
    Biomolecules; 2015 Nov; 5(4):2987-3008. PubMed ID: 26556381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of novel nucleosides from free base and sugar phosphate: aqueous reaction of 2-aminopyrimidine and ribose-5-phosphate.
    Mace DC
    Biochem Biophys Res Commun; 1983 Nov; 117(1):93-8. PubMed ID: 6318754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration.
    Tuma DJ; Thiele GM; Xu D; Klassen LW; Sorrell MF
    Hepatology; 1996 Apr; 23(4):872-80. PubMed ID: 8666344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein adduct species in muscle and liver of rats following acute ethanol administration.
    Patel VB; Worrall S; Emery PW; Preedy VR
    Alcohol Alcohol; 2005; 40(6):485-93. PubMed ID: 16131499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of malonaldehyde and acetaldehyde from the oxidation of 2'-deoxyribonucleosides.
    Miyake T; Shibamoto T
    J Agric Food Chem; 1999 Jul; 47(7):2782-5. PubMed ID: 10552565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on the reaction of alcohol dehydrogenases with tritium-labelled substrates. 3. Primary aliphatic alcohols and aldehydes as substrates of liver alcohol dehydrogenase].
    Palm D; Fiedler T; Ruhrseitz D
    Z Naturforsch B; 1968 May; 23(5):623-8. PubMed ID: 4385919
    [No Abstract]   [Full Text] [Related]  

  • 19. Formation of acetaldehyde-derived DNA adducts due to alcohol exposure.
    Yu HS; Oyama T; Isse T; Kitagawa K; Pham TT; Tanaka M; Kawamoto T
    Chem Biol Interact; 2010 Dec; 188(3):367-75. PubMed ID: 20813101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic synthesis of ribo- and 2'-deoxyribonucleosides from glycofuranosyl phosphates: An approach to facilitate isotopic labeling.
    Zhang W; Turney T; Surjancev I; Serianni AS
    Carbohydr Res; 2017 Sep; 449():125-133. PubMed ID: 28780317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.