These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33752590)

  • 1. Shifts in morphology, gene expression, and selection underlie web loss in Hawaiian Tetragnatha spiders.
    Berger CA; Brewer MS; Kono N; Nakamura H; Arakawa K; Kennedy SR; Wood HM; Adams SA; Gillespie RG
    BMC Ecol Evol; 2021 Mar; 21(1):48. PubMed ID: 33752590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing web evolution and spider diversification in the molecular era.
    Blackledge TA; Scharff N; Coddington JA; Szüts T; Wenzel JW; Hayashi CY; Agnarsson I
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5229-34. PubMed ID: 19289848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders.
    Blackledge TA; Gillespie RG
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16228-33. PubMed ID: 15520386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies.
    Kono N; Nakamura H; Mori M; Tomita M; Arakawa K
    Sci Rep; 2020 Sep; 10(1):15721. PubMed ID: 32973264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated Diversification of Ecomorphs in Hawaiian Stick Spiders.
    Gillespie RG; Benjamin SP; Brewer MS; Rivera MAJ; Roderick GK
    Curr Biol; 2018 Mar; 28(6):941-947.e3. PubMed ID: 29526585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders.
    Spagna JC; Gillespie RG
    Mol Phylogenet Evol; 2008 Jan; 46(1):347-68. PubMed ID: 17928240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioural and biomaterial coevolution in spider orb webs.
    Sensenig A; Agnarsson I; Blackledge TA
    J Evol Biol; 2010 Sep; 23(9):1839-56. PubMed ID: 20629854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification and functional characterization of spidroin genes in a wandering spider, Pardosa pseudoannulata.
    Yu N; Yang Z; Fan Z; Liu Z
    Insect Biochem Mol Biol; 2022 Dec; 151():103862. PubMed ID: 36328175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk gene expression of theridiid spiders: implications for male-specific silk use.
    Correa-Garhwal SM; Chaw RC; Clarke TH; Ayoub NA; Hayashi CY
    Zoology (Jena); 2017 Jun; 122():107-114. PubMed ID: 28536006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origins of the Psechridae: Web-building lycosoid spiders.
    Cheng DQ; Piel WH
    Mol Phylogenet Evol; 2018 Aug; 125():213-219. PubMed ID: 29635024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders.
    Dos Santos-Pinto JRA; Esteves FG; Sialana FJ; Ferro M; Smidak R; Rares LC; Nussbaumer T; Rattei T; Bilban M; Bacci Júnior M; Palma MS; Lübec G
    Mol Omics; 2019 Aug; 15(4):256-270. PubMed ID: 31268449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple origins of a spider radiation in Hawaii.
    Gillespie RG; Croom HB; Palumbi SR
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2290-4. PubMed ID: 8134390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-occurrence of ecologically similar species of Hawaiian spiders reveals critical early phase of adaptive radiation.
    Cotoras DD; Bi K; Brewer MS; Lindberg DR; Prost S; Gillespie RG
    BMC Evol Biol; 2018 Jun; 18(1):100. PubMed ID: 29921226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp).
    Correa-Garhwal SM; Chaw RC; Clarke TH; Alaniz LG; Chan FS; Alfaro RE; Hayashi CY
    PLoS One; 2018; 13(9):e0203563. PubMed ID: 30235223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolutionary history of cribellate orb-weaver capture thread spidroins.
    Correa-Garhwal SM; Baker RH; Clarke TH; Ayoub NA; Hayashi CY
    BMC Ecol Evol; 2022 Jul; 22(1):89. PubMed ID: 35810286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression.
    Babb PL; Lahens NF; Correa-Garhwal SM; Nicholson DN; Kim EJ; Hogenesch JB; Kuntner M; Higgins L; Hayashi CY; Agnarsson I; Voight BF
    Nat Genet; 2017 Jun; 49(6):895-903. PubMed ID: 28459453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation.
    Stellwagen SD; Renberg RL
    G3 (Bethesda); 2019 Jun; 9(6):1909-1919. PubMed ID: 30975702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Golden orb-weaving spider (Trichonephila clavipes) silk genes with sex-biased expression and atypical architectures.
    Correa-Garhwal SM; Babb PL; Voight BF; Hayashi CY
    G3 (Bethesda); 2021 Jan; 11(1):. PubMed ID: 33561241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders.
    Chaw RC; Zhao Y; Wei J; Ayoub NA; Allen R; Atrushi K; Hayashi CY
    BMC Evol Biol; 2014 Feb; 14():31. PubMed ID: 24552485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of spidroin proteins in the silk glands of golden orb-weaver spiders.
    Jorge I; Ruiz V; Lavado-García J; Vázquez J; Hayashi C; Rojo FJ; Atienza JM; Elices M; Guinea GV; Pérez-Rigueiro J
    J Exp Zool B Mol Dev Evol; 2022 Jun; 338(4):241-253. PubMed ID: 34981640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.