BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 33752598)

  • 1. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data.
    Chopra R; Burow G; Farmer A; Mudge J; Simpson CE; Burow MD
    PLoS One; 2014; 9(12):e115055. PubMed ID: 25551607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana.
    Nakasugi K; Crowhurst R; Bally J; Waterhouse P
    PLoS One; 2014; 9(3):e91776. PubMed ID: 24614631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal assembly strategies of transcriptome related to ploidies of eukaryotic organisms.
    He B; Zhao S; Chen Y; Cao Q; Wei C; Cheng X; Zhang Y
    BMC Genomics; 2015 Feb; 16(1):65. PubMed ID: 25759274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study.
    Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Transcriptome Assembly in Polyploid Species.
    Gutierrez-Gonzalez JJ; Garvin DF
    Methods Mol Biol; 2017; 1536():209-221. PubMed ID: 28132153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species.
    Li FD; Tong W; Xia EH; Wei CL
    BMC Bioinformatics; 2019 Nov; 20(1):553. PubMed ID: 31694521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads.
    Xie Y; Wu G; Tang J; Luo R; Patterson J; Liu S; Huang W; He G; Gu S; Li S; Zhou X; Lam TW; Li Y; Xu X; Wong GK; Wang J
    Bioinformatics; 2014 Jun; 30(12):1660-6. PubMed ID: 24532719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
    Hölzer M; Marz M
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.
    Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S
    BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut.
    Sadat-Hosseini M; Bakhtiarizadeh MR; Boroomand N; Tohidfar M; Vahdati K
    PLoS One; 2020; 15(4):e0232005. PubMed ID: 32343733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms.
    Mbandi SK; Hesse U; van Heusden P; Christoffels A
    BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.
    Honaas LA; Wafula EK; Wickett NJ; Der JP; Zhang Y; Edger PP; Altman NS; Pires JC; Leebens-Mack JH; dePamphilis CW
    PLoS One; 2016; 11(1):e0146062. PubMed ID: 26731733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.
    Zhang J; Ruhlman TA; Mower JP; Jansen RK
    BMC Plant Biol; 2013 Dec; 13():228. PubMed ID: 24373163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TransLiG: a de novo transcriptome assembler that uses line graph iteration.
    Liu J; Yu T; Mu Z; Li G
    Genome Biol; 2019 Apr; 20(1):81. PubMed ID: 31014374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.