BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33752599)

  • 1. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-Seq data.
    Wenzel MA; Müller B; Pettitt J
    BMC Bioinformatics; 2021 Mar; 22(1):140. PubMed ID: 33752599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution of polycistronic RNA by SL2
    Wenzel M; Johnston C; Müller B; Pettitt J; Connolly B
    RNA; 2020 Dec; 26(12):1891-1904. PubMed ID: 32887788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SL-quant: a fast and flexible pipeline to quantify spliced leader trans-splicing events from RNA-seq data.
    Yague-Sanz C; Hermand D
    Gigascience; 2018 Jul; 7(7):. PubMed ID: 30010768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operons are a conserved feature of nematode genomes.
    Pettitt J; Philippe L; Sarkar D; Johnston C; Gothe HJ; Massie D; Connolly B; Müller B
    Genetics; 2014 Aug; 197(4):1201-11. PubMed ID: 24931407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest.
    Danks GB; Raasholm M; Campsteijn C; Long AM; Manak JR; Lenhard B; Thompson EM
    Mol Biol Evol; 2015 Mar; 32(3):585-99. PubMed ID: 25525214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterodera glycines utilizes promiscuous spliced leaders and demonstrates a unique preference for a species-specific spliced leader over C. elegans SL1.
    Barnes SN; Masonbrink RE; Maier TR; Seetharam A; Sindhu AS; Severin AJ; Baum TJ
    Sci Rep; 2019 Feb; 9(1):1356. PubMed ID: 30718603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A global analysis of C. elegans trans-splicing.
    Allen MA; Hillier LW; Waterston RH; Blumenthal T
    Genome Res; 2011 Feb; 21(2):255-64. PubMed ID: 21177958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of transcription start sites of trans-spliced genes: uncovering unusual operon arrangements.
    Morton JJ; Blumenthal T
    RNA; 2011 Feb; 17(2):327-37. PubMed ID: 21156961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of trans-splicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons.
    Sinha A; Langnick C; Sommer RJ; Dieterich C
    RNA; 2014 Sep; 20(9):1386-97. PubMed ID: 25015138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SL2-like spliced leader RNAs in the basal nematode Prionchulus punctatus: New insight into the evolution of nematode SL2 RNAs.
    Harrison N; Kalbfleisch A; Connolly B; Pettitt J; Müller B
    RNA; 2010 Aug; 16(8):1500-7. PubMed ID: 20566669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing.
    Krchňáková Z; Krajčovič J; Vesteg M
    J Mol Evol; 2017 Aug; 85(1-2):37-45. PubMed ID: 28744787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C. elegans sequences that control trans-splicing and operon pre-mRNA processing.
    Graber JH; Salisbury J; Hutchins LN; Blumenthal T
    RNA; 2007 Sep; 13(9):1409-26. PubMed ID: 17630324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans-splicing in the cestode Hymenolepis microstoma is constitutive across the life cycle and depends on gene structure and composition.
    Calvelo J; Brehm K; Iriarte A; Koziol U
    Int J Parasitol; 2023 Feb; 53(2):103-117. PubMed ID: 36621599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vivo genetic screen for genes involved in spliced leader trans-splicing indicates a crucial role for continuous de novo spliced leader RNP assembly.
    Philippe L; Pandarakalam GC; Fasimoye R; Harrison N; Connolly B; Pettitt J; Müller B
    Nucleic Acids Res; 2017 Aug; 45(14):8474-8483. PubMed ID: 28582530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operon structure and trans-splicing in the nematode Pristionchus pacificus.
    Lee KZ; Sommer RJ
    Mol Biol Evol; 2003 Dec; 20(12):2097-103. PubMed ID: 12949121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of spliced leader trans-splicing in the regenerative flatworm Macrostomum lignano reveals its prevalence in conserved and stem cell related genes.
    Ustyantsev KV; Berezikov EV
    Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):101-107. PubMed ID: 34901707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome.
    Ganot P; Kallesøe T; Reinhardt R; Chourrout D; Thompson EM
    Mol Cell Biol; 2004 Sep; 24(17):7795-805. PubMed ID: 15314184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global analysis of Caenorhabditis elegans operons.
    Blumenthal T; Evans D; Link CD; Guffanti A; Lawson D; Thierry-Mieg J; Thierry-Mieg D; Chiu WL; Duke K; Kiraly M; Kim SK
    Nature; 2002 Jun; 417(6891):851-4. PubMed ID: 12075352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycistronic pre-mRNA processing in vitro: snRNP and pre-mRNA role reversal in trans-splicing.
    Lasda EL; Allen MA; Blumenthal T
    Genes Dev; 2010 Aug; 24(15):1645-58. PubMed ID: 20624853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa.
    Derelle R; Momose T; Manuel M; Da Silva C; Wincker P; Houliston E
    RNA; 2010 Apr; 16(4):696-707. PubMed ID: 20142326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.