These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33752698)

  • 1. Identifying human postural dynamics and control from unperturbed balance.
    Lee J; Zhang K; Hogan N
    J Neuroeng Rehabil; 2021 Mar; 18(1):54. PubMed ID: 33752698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of motor and sensory noise in the control of upright standing.
    Cherif A; Loram I; Zenzeri J
    Prog Brain Res; 2019; 248():319-327. PubMed ID: 31239143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorimotor control of standing balance.
    Forbes PA; Chen A; Blouin JS
    Handb Clin Neurol; 2018; 159():61-83. PubMed ID: 30482333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free Energy Principle in Human Postural Control System: Skin Stretch Feedback Reduces the Entropy.
    Hur P; Pan YT; DeBuys C
    Sci Rep; 2019 Nov; 9(1):16870. PubMed ID: 31727928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-joint model of quiet, upright stance accounts for the "uncontrolled manifold" structure of joint variance.
    Reimann H; Schöner G
    Biol Cybern; 2017 Dec; 111(5-6):389-403. PubMed ID: 28924748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different methods to identify and quantify balance control.
    van der Kooij H; van Asseldonk E; van der Helm FC
    J Neurosci Methods; 2005 Jun; 145(1-2):175-203. PubMed ID: 15922036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of balance training with visual feedback during mechanically unperturbed standing on postural corrective responses.
    Sayenko DG; Masani K; Vette AH; Alekhina MI; Popovic MR; Nakazawa K
    Gait Posture; 2012 Feb; 35(2):339-44. PubMed ID: 22118729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity and dynamics of switched human balance control during quiet standing.
    Nema S; Kowalczyk P; Loram I
    Biol Cybern; 2015 Oct; 109(4-5):469-78. PubMed ID: 26249846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance.
    Vette AH; Masani K; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):235-43. PubMed ID: 17601193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the underlying systems involved in standing balance: the additional value of electromyography in system identification and parameter estimation.
    Pasma JH; van Kordelaar J; de Kam D; Weerdesteyn V; Schouten AC; van der Kooij H
    J Neuroeng Rehabil; 2017 Sep; 14(1):97. PubMed ID: 28915821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Center-of-pressure dynamics of upright standing as a function of sloped surfaces and vision.
    King AC; Patton J; Dutt-Mazumder A; Newell KM
    Neurosci Lett; 2020 Oct; 737():135334. PubMed ID: 32861813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The time-delayed inverted pendulum: implications for human balance control.
    Milton J; Cabrera JL; Ohira T; Tajima S; Tonosaki Y; Eurich CW; Campbell SA
    Chaos; 2009 Jun; 19(2):026110. PubMed ID: 19566270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of muscle coactivation in adaptation of standing posture during arm reaching.
    Pienciak-Siewert A; Horan DP; Ahmed AA
    J Neurophysiol; 2020 Feb; 123(2):529-547. PubMed ID: 31851559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transitions in persistence of postural dynamics depend on the velocity and structure of postural perturbations.
    Rand TJ; Mukherjee M
    Exp Brain Res; 2018 May; 236(5):1491-1500. PubMed ID: 29564503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of Vestibular Signals for the Control of Standing in Humans.
    Forbes PA; Luu BL; Van der Loos HF; Croft EA; Inglis JT; Blouin JS
    J Neurosci; 2016 Nov; 36(45):11510-11520. PubMed ID: 27911755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear postural control paradigm for larger perturbations in the presence of neural delays.
    Sultan N; Najam Ul Islam M; Mughal AM
    Biol Cybern; 2021 Aug; 115(4):397-414. PubMed ID: 34373936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: A simulation study.
    De Groote F; Allen JL; Ting LH
    J Biomech; 2017 Apr; 55():71-77. PubMed ID: 28259465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceleration feedback improves balancing against reflex delay.
    Insperger T; Milton J; Stépán G
    J R Soc Interface; 2013 Feb; 10(79):20120763. PubMed ID: 23173196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.