These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 33752945)

  • 21. Solid-state fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor.
    Pal M; Calvo AM; Terrón MC; González AE
    World J Microbiol Biotechnol; 1995 Sep; 11(5):541-5. PubMed ID: 24414910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk.
    Su Y; Xian H; Shi S; Zhang C; Manik SM; Mao J; Zhang G; Liao W; Wang Q; Liu H
    BMC Biotechnol; 2016 Nov; 16(1):81. PubMed ID: 27871279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes.
    Zeng S; Zhao J; Xia L
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1237-1245. PubMed ID: 28536853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatty acid secretion by the white-rot fungus, Trametes versicolor.
    Hao G; Barker GC
    J Ind Microbiol Biotechnol; 2022 Jan; 49(1):. PubMed ID: 34788844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. White-rot fungi-mediated biodegradation of cytostatic drugs - bleomycin and vincristine.
    Jureczko M; Przystaś W; Krawczyk T; Gonciarz W; Rudnicka K
    J Hazard Mater; 2021 Apr; 407():124632. PubMed ID: 33359974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosurfactant production by Trametes versicolor grown on two-phase olive mill waste in solid-state fermentation.
    Lourenço LA; Alberton Magina MD; Tavares LBB; Guelli Ulson de Souza SMA; García Román M; Altmajer Vaz D
    Environ Technol; 2018 Dec; 39(23):3066-3076. PubMed ID: 28854850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioremediation of paper and pulp mill effluents.
    Murugesan K
    Indian J Exp Biol; 2003 Nov; 41(11):1239-48. PubMed ID: 15332490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor.
    Shah V; Dobiásová P; Baldrian P; Nerud F; Kumar A; Seal S
    J Hazard Mater; 2010 Jun; 178(1-3):1141-5. PubMed ID: 20185234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of wheat straw lignin by solid state fermentation with white-rot fungi.
    Dinis MJ; Bezerra RM; Nunes F; Dias AA; Guedes CV; Ferreira LM; Cone JW; Marques GS; Barros AR; Rodrigues MA
    Bioresour Technol; 2009 Oct; 100(20):4829-35. PubMed ID: 19450975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yellow laccase produced by Trametes versicolor K1 on tomato waste: A comparative study with the blue one produced on semi-synthetic medium.
    Chaoua S; Chaouche NK; Songulashvili G; Gares M; Hiligsmann S; Flahaut S
    J Biotechnol; 2023 Jan; 361():99-109. PubMed ID: 36509383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system.
    Diorio LA; Fréchou DMS; Levin LN
    Rev Argent Microbiol; 2021; 53(1):3-10. PubMed ID: 32620257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on the degradation of corn straw by combined bacterial cultures.
    Chu X; Awasthi MK; Liu Y; Cheng Q; Qu J; Sun Y
    Bioresour Technol; 2021 Jan; 320(Pt A):124174. PubMed ID: 33147529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous laccase production and transformation of bisphenol-A and triclosan using
    Singh J; Kumar P; Saharan V; Kapoor RK
    3 Biotech; 2019 Apr; 9(4):129. PubMed ID: 30863708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of horticultural waste for laccase production by Trametes versicolor under solid-state fermentation.
    Xin F; Geng A
    Appl Biochem Biotechnol; 2011 Jan; 163(2):235-46. PubMed ID: 20640894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignocellulosic waste valorisation strategy through enzyme and biogas production.
    Wyman V; Henríquez J; Palma C; Carvajal A
    Bioresour Technol; 2018 Jan; 247():402-411. PubMed ID: 28961446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical model for Trametes versicolor growth in submerged cultivation.
    Tisma M; Sudar M; Vasić-Racki D; Zelić B
    Bioprocess Biosyst Eng; 2010 Aug; 33(6):749-58. PubMed ID: 19949814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes.
    Moldes D; Lorenzo M; Sanromán MA
    Biotechnol Lett; 2004 Feb; 26(4):327-30. PubMed ID: 15055770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes.
    Vršanská M; Voběrková S; Jiménez Jiménez AM; Strmiska V; Adam V
    Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29295505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.
    Aguiar A; Gavioli D; Ferraz A
    Fungal Biol; 2014 Nov; 118(11):935-42. PubMed ID: 25442296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.