BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33753487)

  • 1. Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy.
    Jacobson DR; Perkins TT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.
    Heenan PR; Yu H; Siewny MGW; Perkins TT
    J Chem Phys; 2018 Mar; 148(12):123313. PubMed ID: 29604885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriorhodopsin folds into the membrane against an external force.
    Kessler M; Gottschalk KE; Janovjak H; Muller DJ; Gaub HE
    J Mol Biol; 2006 Mar; 357(2):644-54. PubMed ID: 16434052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the Native Energetics Stabilizing Bacteriorhodopsin by Single-Molecule Force Spectroscopy.
    Yu H; Jacobson DR; Luo H; Perkins TT
    Phys Rev Lett; 2020 Aug; 125(6):068102. PubMed ID: 32845671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways.
    Sapra KT; Balasubramanian GP; Labudde D; Bowie JU; Muller DJ
    J Mol Biol; 2008 Feb; 376(4):1076-90. PubMed ID: 18191146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unfolding pathways of individual bacteriorhodopsins.
    Oesterhelt F; Oesterhelt D; Pfeiffer M; Engel A; Gaub HE; Müller DJ
    Science; 2000 Apr; 288(5463):143-6. PubMed ID: 10753119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins.
    Yu H; Siewny MG; Edwards DT; Sanders AW; Perkins TT
    Science; 2017 Mar; 355(6328):945-950. PubMed ID: 28254940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin.
    Sapra KT; Doehner J; Renugopalakrishnan V; Padrós E; Muller DJ
    Biophys J; 2008 Oct; 95(7):3407-18. PubMed ID: 18621827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying a light-induced energetic change in bacteriorhodopsin by force spectroscopy.
    Jacobson DR; Perkins TT
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2313818121. PubMed ID: 38324569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy.
    Sapra KT; Besir H; Oesterhelt D; Muller DJ
    J Mol Biol; 2006 Jan; 355(4):640-50. PubMed ID: 16330046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp.
    Jacobson DR; Uyetake L; Perkins TT
    Biophys J; 2020 Feb; 118(3):667-675. PubMed ID: 31882249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring membrane protein stability under native conditions.
    Chang YC; Bowie JU
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):219-24. PubMed ID: 24367094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the folding and unfolding of wild-type and mutant forms of bacteriorhodopsin in micellar solutions: evaluation of reversible unfolding conditions.
    Chen GQ; Gouaux E
    Biochemistry; 1999 Nov; 38(46):15380-7. PubMed ID: 10563824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy of membrane protein unfolding derived from single-molecule force measurements.
    Preiner J; Janovjak H; Rankl C; Knaus H; Cisneros DA; Kedrov A; Kienberger F; Muller DJ; Hinterdorfer P
    Biophys J; 2007 Aug; 93(3):930-7. PubMed ID: 17483176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.
    Sapra KT
    Methods Mol Biol; 2013; 974():73-110. PubMed ID: 23404273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the energy landscape of the membrane protein bacteriorhodopsin.
    Janovjak H; Struckmeier J; Hubain M; Kedrov A; Kessler M; Müller DJ
    Structure; 2004 May; 12(5):871-9. PubMed ID: 15130479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic stability of the bacteriorhodopsin lattice as measured by lipid dilution.
    Isenbarger TA; Krebs MP
    Biochemistry; 2001 Oct; 40(39):11923-31. PubMed ID: 11570893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.