These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33753497)

  • 21. A simple catch: Fluctuations enable hydrodynamic trapping of microrollers by obstacles.
    van der Wee EB; Blackwell BC; Balboa Usabiaga F; Sokolov A; Katz IT; Delmotte B; Driscoll MM
    Sci Adv; 2023 Mar; 9(10):eade0320. PubMed ID: 36888698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning fluidic resistance via liquid crystal microfluidics.
    Sengupta A
    Int J Mol Sci; 2013 Nov; 14(11):22826-44. PubMed ID: 24256819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Jumping robots: a biomimetic solution to locomotion across rough terrain.
    Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R
    Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells.
    Tsvirkun D; Grichine A; Duperray A; Misbah C; Bureau L
    Sci Rep; 2017 Mar; 7():45036. PubMed ID: 28338083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics.
    Burri JT; Munglani G; Nelson BJ; Grossniklaus U; Vogler H
    Methods Mol Biol; 2020; 2160():275-292. PubMed ID: 32529444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-motion effects on hydrodynamic pressure sensing: part I. forward-backward motion.
    Akanyeti O; Chambers LD; Ježov J; Brown J; Venturelli R; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2013 Jun; 8(2):026001. PubMed ID: 23462257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A ferrobotic system for automated microfluidic logistics.
    Yu W; Lin H; Wang Y; He X; Chen N; Sun K; Lo D; Cheng B; Yeung C; Tan J; Di Carlo D; Emaminejad S
    Sci Robot; 2020 Feb; 5(39):. PubMed ID: 33022601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electromagnetic drive of microrobot geometrically constrained in blood vessel.
    Nakamura S; Harada K; Sugita N; Mitsuishi M; Kaneko M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6664-7. PubMed ID: 22255867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-Printed Multi-Stimuli-Responsive Mobile Micromachines.
    Lee YW; Ceylan H; Yasa IC; Kilic U; Sitti M
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12759-12766. PubMed ID: 33378156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields.
    Li C; Lau GC; Yuan H; Aggarwal A; Dominguez VL; Liu S; Sai H; Palmer LC; Sather NA; Pearson TJ; Freedman DE; Amiri PK; de la Cruz MO; Stupp SI
    Sci Robot; 2020 Dec; 5(49):. PubMed ID: 33298516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetically Propelled Fish-Like Nanoswimmers.
    Li T; Li J; Zhang H; Chang X; Song W; Hu Y; Shao G; Sandraz E; Zhang G; Li L; Wang J
    Small; 2016 Nov; 12(44):6098-6105. PubMed ID: 27600373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial annelid robot driven by soft actuators.
    Jung K; Koo JC; Nam JD; Lee YK; Choi HR
    Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Highly Multi-Stable Meta-Structure via Anisotropy for Large and Reversible Shape Transformation.
    Risso G; Sakovsky M; Ermanni P
    Adv Sci (Weinh); 2022 Sep; 9(26):e2202740. PubMed ID: 35861407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.
    Kandhari A; Huang Y; Daltorio KA; Chiel HJ; Quinn RD
    Bioinspir Biomim; 2018 Jan; 13(2):026003. PubMed ID: 29261099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.