These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
721 related articles for article (PubMed ID: 33754031)
21. [Research progress of NADPH oxidases and their inhibitors]. Yang XL; Chen YJ; Hu GY; Li QB Yao Xue Xue Bao; 2016 Apr; 51(4):499-506. PubMed ID: 29859517 [TBL] [Abstract][Full Text] [Related]
22. Oxidative stress in apoptosis and cancer: an update. Matés JM; Segura JA; Alonso FJ; Márquez J Arch Toxicol; 2012 Nov; 86(11):1649-65. PubMed ID: 22811024 [TBL] [Abstract][Full Text] [Related]
23. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases. Babizhayev MA; Yegorov YE Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433 [TBL] [Abstract][Full Text] [Related]
24. Reactive oxygen species and cancer paradox: To promote or to suppress? Galadari S; Rahman A; Pallichankandy S; Thayyullathil F Free Radic Biol Med; 2017 Mar; 104():144-164. PubMed ID: 28088622 [TBL] [Abstract][Full Text] [Related]
25. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Wang C; Shao L; Pan C; Ye J; Ding Z; Wu J; Du Q; Ren Y; Zhu C Stem Cell Res Ther; 2019 Jun; 10(1):175. PubMed ID: 31196164 [TBL] [Abstract][Full Text] [Related]
26. The redox regulation of thiol dependent signaling pathways in cancer. Giles GI Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752 [TBL] [Abstract][Full Text] [Related]
27. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Farooq MA; Niazi AK; Akhtar J; Saifullah ; Farooq M; Souri Z; Karimi N; Rengel Z Plant Physiol Biochem; 2019 Aug; 141():353-369. PubMed ID: 31207496 [TBL] [Abstract][Full Text] [Related]
28. Oxidative Stress in Cancer. Hayes JD; Dinkova-Kostova AT; Tew KD Cancer Cell; 2020 Aug; 38(2):167-197. PubMed ID: 32649885 [TBL] [Abstract][Full Text] [Related]
29. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Miyata Y; Matsuo T; Sagara Y; Ohba K; Ohyama K; Sakai H Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29065504 [TBL] [Abstract][Full Text] [Related]
30. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells. Yang X; Wang D; Ma Y; Xu X; Zhu Z; Wang X; Deng H; Li C; Chen M; Tong J; Yamanaka K; An Y Toxicol Appl Pharmacol; 2015 Dec; 289(2):231-9. PubMed ID: 26420645 [TBL] [Abstract][Full Text] [Related]
31. Redox regulation in cancer: a double-edged sword with therapeutic potential. Acharya A; Das I; Chandhok D; Saha T Oxid Med Cell Longev; 2010; 3(1):23-34. PubMed ID: 20716925 [TBL] [Abstract][Full Text] [Related]
32. Reactive oxygen species in cancer: Current findings and future directions. Nakamura H; Takada K Cancer Sci; 2021 Oct; 112(10):3945-3952. PubMed ID: 34286881 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial ROS and cancer drug resistance: Implications for therapy. Okon IS; Zou MH Pharmacol Res; 2015 Oct; 100():170-4. PubMed ID: 26276086 [TBL] [Abstract][Full Text] [Related]
34. Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation. Sun L; Luo C; Liu J Food Funct; 2014 Aug; 5(8):1909-14. PubMed ID: 24953710 [TBL] [Abstract][Full Text] [Related]
35. Dual Roles of Oxidative Stress in Metal Carcinogenesis. Xu J; Wise JTF; Wang L; Schumann K; Zhang Z; Shi X J Environ Pathol Toxicol Oncol; 2017; 36(4):345-376. PubMed ID: 29431065 [TBL] [Abstract][Full Text] [Related]
36. Expanding roles of superoxide dismutases in cell regulation and cancer. Che M; Wang R; Li X; Wang HY; Zheng XFS Drug Discov Today; 2016 Jan; 21(1):143-149. PubMed ID: 26475962 [TBL] [Abstract][Full Text] [Related]
37. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Korge P; Calmettes G; Weiss JN Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705 [TBL] [Abstract][Full Text] [Related]
38. Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy. Vostrikova SM; Grinev AB; Gogvadze VG Biochemistry (Mosc); 2020 Oct; 85(10):1254-1266. PubMed ID: 33202210 [TBL] [Abstract][Full Text] [Related]
39. Resveratrol regulates blood pressure by enhancing AMPK signaling to downregulate a Rac1-derived NADPH oxidase in the central nervous system. Yeh TC; Shin CS; Chen HH; Lai CC; Sun GC; Tseng CJ; Cheng PW J Appl Physiol (1985); 2018 Jul; 125(1):40-48. PubMed ID: 29494287 [TBL] [Abstract][Full Text] [Related]
40. Imperative connotation of SODs in cancer: Emerging targets and multifactorial role of action. Panda B; Tripathy A; Patra S; Kullu B; Tabrez S; Jena M IUBMB Life; 2024 Sep; 76(9):592-613. PubMed ID: 38600696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]