BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 3375436)

  • 1. Absolute scattering probabilities for subexcitation electrons in condensed H2O.
    Bader G; Chiasson J; Caron LG; Michaud M; Perluzzo G; Sanche L
    Radiat Res; 1988 Jun; 114(3):467-79. PubMed ID: 3375436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermalization of subexcitation electrons in solid water.
    Goulet T; Jay-Gerin JP
    Radiat Res; 1989 Apr; 118(1):46-62. PubMed ID: 2704791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inelastic scattering and stopping power of low-energy electrons (0.01-10 keV) in toluene.
    García G; Blanco F; Grau Carles A; Grau Malonda A
    Appl Radiat Isot; 2004; 60(2-4):481-5. PubMed ID: 14987689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute vibrational and electronic cross sections for low-energy electron (2-12 eV) scattering from condensed pyrimidine.
    Levesque PL; Michaud M; Sanche L
    J Chem Phys; 2005 Mar; 122(9):094701. PubMed ID: 15836156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational and electronic excitations of H(2)O on thymine films induced by low-energy electrons.
    Cho W; Michaud M; Sanche L
    J Chem Phys; 2004 Dec; 121(22):11289-95. PubMed ID: 15634084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron beam transport in heterogeneous slab media from MeV down to eV.
    Yousfi M; Leger J; Loiseau JF; Held B; Eichwald O; Defoort B; Dupillier JM
    Radiat Prot Dosimetry; 2006; 122(1-4):46-52. PubMed ID: 17151011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint experimental and theoretical study of vibrationally inelastic electron scattering on propane.
    Popović DB; David DE; Michl J; Curík R; Cársky P
    J Chem Phys; 2004 Dec; 121(21):10551-5. PubMed ID: 15549938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential and integral W-values for ionization in gaseous water under electron and proton irradiation: consistency of inelastic collision cross sections.
    La Verne JA; Mozumder A
    Radiat Res; 1992 Jul; 131(1):1-9. PubMed ID: 1320765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.
    Brun E; Cloutier P; Sicard-Roselli C; Fromm M; Sanche L
    J Phys Chem B; 2009 Jul; 113(29):10008-13. PubMed ID: 19603845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Products and reaction sequences in tetrahydrofuran exposed to low-energy electrons.
    Jäggle C; Swiderek P; Breton SP; Michaud M; Sanche L
    J Phys Chem B; 2006 Jun; 110(25):12512-22. PubMed ID: 16800580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross sections for low-energy (1-100 eV) electron elastic and inelastic scattering in amorphous ice.
    Michaud M; Wen A; Sanche L
    Radiat Res; 2003 Jan; 159(1):3-22. PubMed ID: 12492364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Damage induced by low-energy electrons in solid films of tetrahydrofuran.
    Breton SP; Michaud M; Jäggle C; Swiderek P; Sanche L
    J Chem Phys; 2004 Dec; 121(22):11240-9. PubMed ID: 15634080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-energy electron scattering cross section for the production of CO within solid films of carbon dioxide.
    Deschamps MC; Michaud M; Sanche L
    J Chem Phys; 2004 Sep; 121(9):4284-91. PubMed ID: 15332976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute electronic excitation cross sections for low-energy electron (5-12 eV) scattering from condensed thymine.
    Levesque PL; Michaud M; Cho W; Sanche L
    J Chem Phys; 2005 Jun; 122(22):224704. PubMed ID: 15974700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-energy electron diffraction and induced damage in hydrated DNA.
    Orlando TM; Oh D; Chen Y; Aleksandrov AB
    J Chem Phys; 2008 May; 128(19):195102. PubMed ID: 18500900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface.
    Emfietzoglou D; Nikjoo H
    Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the incident collision energy on the phase and crystallization kinetics of vapor deposited water films.
    Scott Smith R; Zubkov T; Kay BD
    J Chem Phys; 2006 Mar; 124(11):114710. PubMed ID: 16555913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.